Sanitized Copy Approved for Release 2010/07/13 : CIA-RDP81-01043R000500080007-7

STAT

Sanitized Copy Approved for Release 2010/07/13 : CIA-RDP81-01043R000500080007-7



Sanitized Copy Approved for Release 2010/07/13 : CIA-RDP81-01043R000500080007-7

UNCLASSIFIED

TOPICS IN THE DESIGN
OF ANTENNAS FOR SCATTER

John Granlund

Group 33

Technical Report No. 135

23 November 1956

ABSTRACT

Unlike the signal received over a line-of-sight path, scatter signals arrive at the
receiving site from a continuum of directions with intensities thatmay be described
by a directional pattern similar to an antenna pattern. This report shows how the
mean signal power available at the terminals of a receiving antenna may be ex-
pressed in terms of the antenna pattern and of a pattern of incoming power density.
Methods of measuring the power-density pattern at the receiving site are discussed.
Designs maximizing the available power are obtained for two rather general types
of antenna when they are illuminated by arbitrary power-density patterns. Numerical
results, obtained for an assumed Gaussian-shaped power-sensity pattern, suggest
that only a very small increase in available power may be obtained by readjusting
the pattern of an antenna that was initially adjusted to have maximum plane-wave
gain in the direction of maximum power density.

A large array of small antennas may be subject to “gain loss” but, if the connec~
tions between array elements are allowed to vary in time at the fading rate, the
array will not exhibit “gain loss.” Appropriate electronic circuitry for the inter-
c tions is di d
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TOPICS IN THE DESIGN OF ANTENNAS FOR SCATTER

I. INTRODUCTION

Practical communication links utilizing the weak, fluctuating scatter signals received from
a remote transmitter have been demonstrated.1 Unlike signals received over a short line-of-
sight path, these scatter signals arrive at the receiving site from a continuum of directions with
intensities that may be described by a directional pattern similar to an antenna pattern. This
spread in the directions of arrival of the signal components gives rise to a phenomenon that has
misleadingly been called "gain loss": The strengths of scatter signals from a remote trans-
mitter, received on adjacent, dissimilar antennas, are not in the same proportion as the plane-
wave gains of the antennas.

As suggested by Schott,2 the mean signal power available at the terminals of a receiving
antenna is proportional to the sum (or integral) over all directions of the pattern of incoming
power density weighted by the antenna pattern. In arriving at this result, Schott makes the
plausible assumption that the plane-wave components of the signal arriving from different direc-
tions are uncorrelated. This assumption, which is also made here, is implicit in the concept of
a pattern of power density; the assumption is discussed in greater detail in the next section.

The aim of this report is to provide a method for arriving at a "best" antenna design for
the reception of scatter signals. Certainly the "best" antenna should deliver the "greatest"
signal strength to its associated receiver but, since scatter signals are subject to fading, the
choice of a "greatest" signal implies a criterion of measurement. Also, in general, the larger
the antenna, the greater the signal it will deliver. In the sense of this report, the optimumre-
ceiving antenna is that stationary structure of a given size which delivers maximum mean signal
power to a matched load.

Although the pattern of incoming power density gives necessary and sufficient signal data
for the design of an optimum receiving antenna, the shape of this pattern depends on the shape
of the transmitting antenna pattern as well as on the behavior of the scattering mechanism. In
other words, a detailed description of the scattering mechanism itself would be necessary for
the simultaneous optimization of both transmitting and receiving antennas. Such a description
is beyond the scope of this report. Nevertheless, the remainder of this introductory section is
given to an elementary discussion of the effects that the transmitting and receiving antenna pat-
terns may have on the received signal power.

Following a simplified version of the Booker-Gordon model of the scattering mecha.nism,3
let us suppose that the transmitting antenna emits power uniformly in a circular cone having a
small angle et, as in Fig.1. Similarly, let the receiving antenna accept power uniformly only
in a cone having a small angle er. Suppose that the region above the surface of the earth is
entirely uniform except for some subregion having a volume V, where scattering takes place.
Suppose that each volume element, AV, of V scatters power isotropically, so that KAV watts

per unit solid angle are scattered whenthe volume element is illuminated with unit power density
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from the transmitting antenna, and let K be very small so that V intercepts negligible power,
and multiple scattering may be neglected. Let the lincar dimensions of V be small compared
with the distances from V to the transmitting and receiving sites. Finally, let V' be entirely

contained within the common volume defined by the intersection of the transmitting= and

receiving-antenna cones.

& T i % S TR T

TRANSMITTING RECEIVING  TRANSMITTING RECEIVING
ANTENNA ANTENNA ANTENNA ANTENNA

Fig. 1. The scattering region is contained in the Fig. 2. If beamwidths are reduced, the common
common volume. volume is contained in the scattering region.

The power gain of the transmitting antenna is inversely proportional to 67, and the power
gain of the receiving antenna is inversely proportional to © 2 The signal power available at
the terminals of the receiving antenna is proportional to the product of the antenna gains, the
scattering coefficient K, and the volume of the region in which scattering takes place, V. As

far as the antennas are concerned,

(received power) «

If the angular width i r i
N gular of the receiving antenna pattern, © , were varied, the received power would

e just proportional to the gain of that antenna: In the present elementary circumstance, the
"gain loss" phenos i i i i ;

g phenomenon does not appear provided the scattering region V lies entirely within the
common volume. In other words, the dependence of received power on antenna gains is the same
as that for a line-of-sight path if the antennas cannot "resolve" the scattering region.

On the other hand, if the antenna beamwidths are reduced to increase the received power
a point is reached where the common volume no longer contains the scattering region,V. Let
us next examine the dependence of received power on antenna beamwidths when this transition
has been completed; that is, let us assume that the common volume of the antenna cones is
entirely contained within the scattering region V, as in Fig.2. Suppose that the transmitting
antenna cone is the larger, and that it is pi i i
, pierced through its center by the receivi

ce -

anten y iving-antenna

The region in which scattering takes place is now just the common volume, which can be
described roughly as a cylinder having a hei i } .

eight
g ght proportional to ©, and a cross-sectional area
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proportional to 62, The volume of this cylinder is proportional to Oy 02, the received power

is proportional to it and to the product of the antenna gains:

(received power) « 0, o

No further increase in received power can be obtained by reducing the receiving-anienna beam-
width 0, and the received power increases at only half the rate of the previous case when the
\ransmitting-antenna beamwidth ©, is reduced. Both antennas seem to exhibit "gain loss."
Supposc that the transmitting-antenna beamwidth is reduced to increase the received power.
\When the two beamwidths are about the same size, the received power will cease to increase
because the assumption about the shape of the common volume will no longer be valid: When
the transmitting-antenna beamwidth ©, is the smaller, the common volume is more nearly pro-

portional to 0, 0, and

(received power) el -
r

But at this point, the receiving-antenna beamwidth may be reduced to increase the received
power. In any case, it appears that, in general, the most economical design of a practical
scatter link would call for equal transmitting- and receiving-antenna beamwidths.

Before closing this discussion of the joint effects of the transmitting- and receiving-antenna
patterns on the received signal power, it is appropriate to discuss the information required for
the simultaneous optimization of both antennas and to remark on the difficulties of obtaining this
information by radio measurements. In general, each volume element in the scattering region
can be expected to scatter power according to some pattern, generally not isotropic, and the
shape of this pattern may depend on the position of the volumedlement in the scattering region.
We may regard the magnitude of the scattering pattern in the direction of the receiving antenna,
produced when one volume element is illuminated by unit power density from the transmitting
antenna, as the scattering efficiency of that volume element. Thus, even if questions of polari-
zation are somehow set aside, it would be necessary to know the scattering efficiency throughout
the scattering region in order to calculate the received power when given transmitting and re-
ceiving antennas are used.

A measurement of the power density arriving at the receiving site gives only two-
dimensional information about the scattering region; the power density is a function of the
azimuth and elevation angles. The pattern of arriving power density is like a "photograph" of
the illuminated scattering region as seen from the receiving site and is not enough information
to determine the behavior of each point in the volume. The additional information that would
be made available by a power-density measurement at a second receiving site does not appear
to be helpful because the scattering pattern of each volume element would contribute differently
to the new "photograph."

The remainder of this report will deal with the density of power arriving at a single re-
ceiving site when a fixed transmitting antenna is used. As shown in the foregoing discussion,
the results will pertain only to the effectiveness of the receiving antenna in extracting power

when it is illuminated by this power-density pattern.
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II. CROSS-CORRELATION BETWEEN ARRIVING SIGNAL COMPONENTS

In this section, we will consider the assumption implicd by the introductory discussion,
namely, that the plane-wave components of the signal arriving from different directions are
uncorrelated. At the receiving site, the electric field due tothe arriving signal may be resolved
{nto an angular spectrum of incoming plane waves. The antenna weights the amplitude of aplane=
wave component F, arriving from a particular direction i, in accordance with the amplitude of
the antenna pattern in that direction, a;, and the open-circuit signal voltage V at the antenna

{erminals is the vector sum (or integral) of the weighted plane-wave components:

V= YyaF . (1)
i

The index i is associated with the direction of arrival of the i™ component.

The amplitudss and phases of the plane-wave comporents Fy, and hence the amplitude and
phase of their weighted sum V, vary in time as a result of motions in the scattering region and
possibly also because the transmitted signal is modulated. Temporarily, it will be convenient
10 assume that the transmitter is not modulated, so that attention is focused on random fluctua-
tions caused by he scattering mechasism. Later we will show that the regults also apply to
modulated signals.

In this report, the notations Av.{ } and (7) reprasent a time average, and ( )¥ means that
the complex conjugate is to be taken. Using them, fle mean-square terminal voltage, a quantity
proportional to the time-average available signal power at the receiving-antenna terminals, may

be written as

VI = av. {(z . F‘\) (g a Fl)*} 2SS e FTE
i k

ik

The cross-correlations ¥ F cannot be regarded as power densities because, although their
weighted sum over ail directions (i and k) is proportional to the total power, it is not possible
1o associate a single direction of arrival with F{ Fff. (Is the direction i or k?) On the other
hand, if
*
F,FF=0 for k#i

the mean-square terminal voltage could be written

w2 =12
W= ot IR
%18
1

and a single direction of arrival i could be ascribed to each term contributing to the total power.
But the above assumption places too severe a restriction on the arriving signal components.
It is neither reasonable nor necessary to assume that two signal components, arriving from
directions that are arbitrarily close together, are uncorrelated. A physical antenna, having
finite aperture dimensions, has a smooth pattern that does not change abruptly with small
changes in direction: for radian changes in direction less than the reciprocal of the largest
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aperture dimension expressed in wavelengths, the antenna pattern remains essentially constant.
Thus, depending on the aperture dimensions, there is a "cone” of directions within which
a % . Let it be assumed that

12' =0 for all k such that a # . (2)

The mean-square terminal voltage can now be written

and the second sum may be regarded as the power density, since a single direction of arrival
i may be ascribed to it.

The relation, (2), and the resulting simplification, (3), indicate the nature of the assump-
tion of incoherence that was implied by the introductory discussion and that will be made in this
report. Essentially, we assume that no antenna we would consider building will have a narrow

enough beamwidth to enable the antenna to resolve the correlation angle: the increment in angle-

of-arrival over which arriving pl are appreciably correlated. Note that,
although we assume no correlation over angular spreads as large as or larger than the beam-
width of some "biggest" antenna, we make no assumption about the shape of the cross-correlation
for angular increments less than the correlation angle; none is necessary. It is quite conceiv-
able, for example, that the cross-correlation would decrease more rapidly with increments in
elevation than with increments in azimuth.

Since no experimental evidence tending to invalidate the assumption of incoherence made
here has come to the attention of the author, the assumption will be considered in the light of
various theories of the scattering mechanism. In terms of the Booker-Gordon theory,> we
assume that the angle at the receiving site subtended by a length in the scattering region equal
to the scale of turbulence is less than the beamwidth of the "biggest" antenna. Airborne refrac-
tometer measurements, as interpreted by Gordon,? yield values of the scale of turbulence of
the order of 50 meters for tropospheric scatter. Even for a short 100-km path, for which the
distance from the scattering region to the receiving site is about 50 km, the correlation angle

is of the order of

20 - 407> radian = 3.4 minutes of arc.

An antenna capable of resolving such a small correlation angle would have aperture dimensions
at least of the order of 10° wavelengths — a 30-meter dish receiving a 10,000-Mcps scatter sig-
nal, for example. Thus, if the scattering mechanism is accurately described by the Booker-
Gordon theory, the assumption of incoherence will be valid in most practical cases. Only in
the case of large antennas, extremely high frequencies, and short path lengths, will the assump-
tion become questionable.

Bailey, et al.,” have applied the Booker-Gordon theory to E-layer scatter, using a value of
100 meters for the scale of turbulence. Since ionospheric scatter becomes important at much
lower frequencies (20 to 100 Mcps) and for greater path lengths (of the order of 10> km) than
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does tropospheric scatter, it is clear that the assumption of incoherence is in complete agree-
ment with this theory of E-layer scatter.

Villars and Weisskopf,® discussing turbulence from a fluid-dynamic point of view, show
{hat Kinelic energy in the atmosphere is dissipated by being transferred from a large turbulent
eddy to successively smaller eddies. In spite of the resulting assortment of eddy sizes, they
attribute the scattering of radio waves only to those eddies having a size of the order of the
vertical wavelength,

A

2 sin0/2
where A is the wavelength and © is the scattering angle through which the radio rays are bent
in the scattering process. The correlation angle is approximately the angle subtended by a
length L in the scattering region at the receiving site. The angle varies inversely with the fre=
quency, but the aperture dimensions of an antenna big enough to resolve the correlation angle
are independent of frequency. They increase very nearly as the square of the path length. For
+ short 100-km path, the aperture dimensions would have to be of the order of 800 meters if the
antenna were to resolve the correlation angle. Thus, in most practical situations, the assump-
tion of incoherence is compatible with the Villars-Weisskopf theory.

Perhaps the most interesting justification of the assumption of incoherence is the following
demonstration that, in certain circumstances, the maximum signal power available at the ter-
minals of an antenna receiving coherent radiation is inversely proportional to the antenna gain.
Needless to say, such a situation has not been observed with properly pointed antennas.

The coefficient a;, which has been described as the amplitude of the receiving-antenna pat-
tern in the i-direction, may be regarded as the amplitude of the plane-wave component that
would leave the receiving antenna in the i-direction if a current of one ampere were applied to
the antenna terminals. The density of power leaving the antenna in the i-direction is then pro-

portional to | and, if the indices are appropriately assigned to the directions,

w= S la? (4)
i

is proportional to the total power radiated from the receiving antenna when it is excited with
\nit current. The quantity W is also proportional to the radiation resistance R_ of the receiving
antenna, since W = 1/2 |I[2 R, and we have chosen unit current 1. Thus, the signal power avail-

able at the terminals of the receiving antenna is proportional to

Av. { Z a R z}

S oyl

trom (1) and (4). Explicit expressions corresponding to (4) and (5) will be developed in Secs. Il
and IV.
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Now suppose that the antenna pattern is confined to directions for which the arriving plane-
wave components F, are perfectly correlated; the sums in (5) will cover only those directions.
I Fx and Fk are "perfectly correlated," they will "fade together" with fluctuations in the scatter-
ing region: The temporal variations of Fy will be proportional to the temporal variations of
We may write
R =g v g a1,

where the complex time function g(t) is independent of direction , and the complex numbers f;
are not time functions. In that case, (5) becomes
T 12 2 2
lgwl® |2 a; fl‘ Saf
Wor o T S
2 oyl 2 layl

i i
and, by the Schwarz inequality, the numerator is less than or equal to

RN N
i k

i

which means that the received power, or at least Wr, which is proportional to it, is

w < 3 = 3 IRF
i i

The inequality holds with the equal sign when a; = f. In that case, the more directions i involved
in the sum, ie., the greater the antenna beamwidth, the greater will be the received power. If,
in addition, [Fj|® [Fy|? in the range of directions covered by the sum, the received power would
be inversely proportional to the antenna gain:

In all fairness to the reader, it should be pointed out that the antenna pattern adjustment
a, = i required for this unusual conclusion will, in general, be practical only if the magnitudes
and phases of the f; do not change abruptly from one direction to the next.

* k%

So far, we have justified the assumption of incoherence, which allows the received signal
power to be written in terms of the antenna pattern and of the pattern of incoming power density,

as in (3). Temporarily, we assumed that the flu of the p F, are
entirely due to fluctuations in the scattering region. But if the shape of the power density pat-
tern were affected by the additional fluctuations caused by modulation of the transmitted signal,
the forthcoming antenna design considerations, which are based on the power-density pattern,
would also depend on the modulation, Fortunately, it appears that this is not the case, as we
shall now see. Wide-band scatter signals may be distorted because of multipath transmission;
it should be noted that we will not attempt to disprove the existence of this effect.

8
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We wish to show that the incoming power density is proportional enly 0 the mean transmitted

power and is i of the modulation. It will be to the power received
with a very directive antenna, pointed in a typical direction, and 0 show that this power does not
depend on the modulation. If this hypothetical
\ 1! SCATTERER receiving antenna is bigger than the "biggest"
~ \\\‘(\ antenna we might consider building, and if it
~ has a beamwidth of the order of the correlation
\\ angle, the power density is proportional to the
Wm mean-square signal voltage at its terminals.

\ i We will suppose, then, that our hypothetical
hol

TRANSMITTING
ANTENNA RECEWING
ECEWNS | Jluminated by plane-wave components arriving

receiving antenna delivers an output only when

Fi . . : . from within a cone having an angle of the order
i9.3. The receivedsignal isa superposition of signals
scattered from the individual scatterers. of the correlation angle, and that the pattern
amplitude is constant within this cone.

In what follows, it will be necessary to work with a model of the scattering mechanism.
We will assume that the signal voltage at the receiving-antenna terminals can be calculated as
{he sum of signals scattered from moving scatierers in the receiving-antenna beam, as shown
in Fig.3. Neglecting the possible dispersion effects of a single scattering, the contribution to

th

the received signal voltage from the u scatterer can be written

b ilt—1 '
W 1 W
and the total received voltage is

W= Zb, =)
®
i(1) is a measure of the instantaneous transmitted signal, say the current at the terminals of
\he transmitting antenna, The time delay 7, is the time-of-flight along the path from the trans-
mitting antenna to the u™ scatterer and thehce to the receiving antenna; 7 changes as the WM
scatterer moves. The real coefficient b is the ratio of the component of v(t) coming from the
W scatterer to the transmitted signal measured 7. seconds earlier, i(t—7); b depends onthe

scattering strength of the g

scatterer, the antenna patterns, and inverse distance.
The usual expression for the instantaneous transmitted signal as the projection of a rotating
vector is

jupt
i)y = Re [ e °]
where w, is the radian carrier frequency. The vector I{t) describes the modulation, a stationary

random process; if the were dulated, I(t) = tant. The received voltage can

be similarly represented. In terms of the vector expression for i(t),

ot -ju,T
v(t) = Re | e Sb e °Fut-T)
" W
u

9
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We will call the complex coefficient In arriving at the last result, it has again been necessary to assume & short correlation

Aistance — in this case, in the direction of most rapid change of \ime-of-flight with distance:

essentially in the vertical direction in the scattering region. But because of the usually small

scattering angles ©, through which the radio rays are bent in "¢ scattering process, the time

of flight over the " path changes relatively slowly with the height of the ' scatterer. For

v = e, He-) - example, Villars and Weisskopf have chosen @ correlation distance (the size of eddies primarily
W

s that the time-dependent vector giving the magnitude and phasc of the received voltage is

responsible for scattering) in such a way that the difference in path length between paths passing
According to the foregoing analysis, the magnitude of ¢, does not depend on the modulation, {hrough the top and bottom of such an eddy is just one wavelength. The difference in time-of-
and its phase is the carrier phase delay of the path through the ui! scatterer, again independent flight over these paths is therefore equal to a period of the carrier. Thus, according to the
of the modulation. Actually, a single scattering may be slightly dispersive so that the magnitude Villars-Weisskopf theory, a scatter signal would have to occupy a bandwidth of the order of the
and phase of the scattering strength of & single scatterer may depend weakly on the signal fre- carrier frequency to invalidate the assumption, (6), leading to the result, (7)
quency. Also, the magnitudes and phases of the antenna patterns may vary slowly with signal The signal bandwidths required by the Booker-Gordon theory to invalidate (6) are generally
frequency. These effects would make the coefficients ¢ dependent on the modulation. However, less than the carrier frequencies, particularly for the microwave frequencies and for the greater

we are certainly justified in neglecting these for most tion signals, since path lengths. Nevertheless, the bandwidths are great enough so that there can be little question

they generally occupy a very narrow band of frequencies relative to the carrier frequency. 1t about the validity of (6).

would be unreasonable to suppose that the modulation depends on th~ rfandom motions in the In this section, we have given an expression for the signal power available at the terminals
scattering region. Thus, we may take ¢, and It =7, ) to be independent random variables, for, of an antenna illuminated by scattered radio waves. We have seen that this expression can be
although both depend on 7, the specification of It — 7,) provides no information about ¢, and interpreted as the sum of weighted power densities, provided that plane-wave components of

conversely. the signal arriving from eppreciably different directions are un lated, and this

The power received by our hypothetical narrow-bearm receiving antenna is proportional to of incoherence has been justified. Finally, we have shown that the power density, which isbasic

to the body of this paper, 18 proportional to the mean transmitted power and is not dependent on

Z Toml 2
Sa/2 ] - - X 1h(t—
VA = 4/2 [Vl © = 1/2 AV {2 RSP 1,,)} the signal modulation.
* v Although this section has been concerned specifically with scatter reception, it seems

[ —
12 $F o F Mo =) probable that the conclusions reached here, and hence the forthcoming results based on them,

ey are more generally applicable. The assumption of incoherence is certainly justified for a line=

a of-sight link, since the signal arrives essentially from one direction. Short-wave signals re-

nd, view of the statisti \J dJ

and, in view of the statistical independence of the ¢'s and the 1 ceived over long-distance ionospheric paths may very Likely also be treated in the manner of
=1, * | this report.
P =1/2 5 S 5, cf M- Bi-1)

W

Finally, if the cross-correlation between the gains of paths through individual scatterers,

o7, decreases essentially to zero for such short differences in time-of-flight, 7, = 7,, that
v
the delayed modulation is essentially unchanged, that is, if *

ToF =
G cF =0 forallv
such that I(t = 7,) # Wt - 1)
then the mean-square received voltage becomes

2 = T2 —_—
Vi = y/2 it X Ee e o
BV

and the received power is seen to be proportional to the mean transmitted power and independent

of the modulation, as required.

10 11
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1II. DESCRIPTION OF THE ANTENNA

Complete descriptions of the antenna pattern and of the pattern of incoming power density
will be required for the design of an optimum antenna The antenna is considered in this section,
and its behavior when receiving scatter signals is considered in Sec.1V. In arriving at explicit
descriptions of the antenna pattern and the power-density pattern, the concept of an angular spec-
trum of plane waves, as discussed by Booker and Clemmow  and by Booker, Ratcliffe and Shinn,
will be extended to three dimensions and used as a mathematical tool

The receiving antenna will be characterized either by the electric fields it would produce if

adio-frequency current of one ampere were applied to its terminals or by the pattern of plane
waves that would emerge from the antenna with the same
excitation. Points in space will be located on a sy stem .
of rectangular coordinates, with the antenna in the vicin= N
ity of the origin. As shown in Fig. 4, it will be conven-
tent to speak of the positive z-direction as being "up."
although the coordinate axes may always be oriented to
suit a particular situation. It will also be convenient to
assume that the region above the xy-plane is free space
and that all the radiation from the antenna crosses the
xy-plane and leaves the antenna in directions above the
horizontal; at least, it will be assumed that any obstacles
above the xy-plane are at great enough distances S0 that
their presence does not materially affect the driving-
point impedance of the antenna. Thus, we imagine an N N
antenna located more or less at the origin of coordinates, SPHERE
radiating into the upper hemisphere, and having all its  Fig.4. Geometry of the space surrounding
active conductors, supporting members, etc., in the the receiving antenna.
lower hemisphere.

Although the restriction to one hemisphere holds approximately for many scatter antennas
that have negligible back radiation, the restriction would not be at all reasonable for simpler
antennas, such as a dipole. In these latter cases, it will generally be possible to piece together
separate solutions for each hemisphere-

We will measure distances in wavelengths, so that

RelE ermo: z))
is the expression for a component of the electric field of a plane wave of carrier frequency f,
\which has left the antenna and is traveling toward the zenith. We shall represent this wave com-

ponent as
E o212
it being understood that this and similar expressions for radio-frequency quantities are to be

multiplied by eJ270! and the real part taken.

13
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In giving the direction of travel of a plane wave, we shall use the direction cosines 1, m and
1, which are the projections of a unit vector on the x-, y- and z-axes, respectively, as shown in

Fig. 4. We regard the direction cosines £ and m as the primary variables; we will use
Zemdanl=t
‘o write n in terfs of £ and m. Thus, we might represent a component of a plane wave ascending

in the direction (¢, m) as,

E E-jZn(xuymn»J 1-42-m?)

and we would mean that the square root is to be taken with the positive sign, since the wave is
traveling into the upper hemisphere. However, we shall often write n in place of the radical for
brevity.

If the projection on the xy-plane of the intersection of an incremental solid angle with the
unit sphere is df dm, the increment of solid angle itself is

_dtdm
ag = dLdm (®)

We shall often have occasion to integrate plane-wave components and other functions of direc-
tion, (£,m), over all directions in the upper hemisphere. These integrals will be written as

S de or SS‘ dt dm
u.h. h.

u.

The second integral may also be taken to cover the inside of the unit circle, P2 em?=1.

Now we will use a physical argument to express the fields, produced when the antenna is
excited with a current of one ampere, as a superposition of the plane waves that emerge from
the antenna. -Let the x-; y- and z-components of the electric field at the point (x,y,z) be the
complex functions, E_(x,y, 2), E (x,y,2) and E (x,y,2), respectively. As shown in Fig. 4, let
“Fy{£, m) d be the horizontally polarized component of the electric field of the plane wave that
leaves the antenna and progresses into the incremental solid angle df2-in the general direction
(t,m). The phase of Fyg(t, m) will be referred to the origin of coordinates. Similarly, let
Fyt, m) dB be the vertically polarized component. As usual, we have taken the horizontal com-
ponent to be tangent to ahorizontal circle of constant latitude on the unit sphere; the *vertical"

is tangent to a longitude circle.

At the point (x,y,2), the of the pl add to give

E (x,y.2) - S‘ ag o-i2rldttymtzn)
h

Fylt, m)
7 v
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similarly,
Ey“'y'z) - S‘ ™ e-]Zﬂ(xHym+zn)
uh.

nm

x Fylt,m) -
z 1 7. 2
%+ m +m

dq oientttymizn) [J;Z +m? Fv(l,m)] .

Fv(l, m)

E,(x,y,2) = S
u.h.

Using the index i to represent one of the subscripts x, y or 2z, these three equations may all be

written as

-jem(xttymtzn) g g, 9

El(x,y,Z) = SS‘ Pl(l.m) e
h.

u.

if the Pi'S are defined by

T2
e m
+ Fy

as d with the F's,
It should be noted, however, that the

The P's may be regarded as p
which are horizontal and vertical plane-wave components.
resultant electric vector defined by the set of P's differs in magnitude from the electric vector
defined by the F's by the factor 1/n, which was absorbed into the P's by the change of variable,(8).

Before continuing with the argument, we will pause to consider the relations, (10). If the
F's are eliminated, there results
(10a)
£ P +mP +nP, =0
alar product of a unit vector, pointing in the direc-

which may be interpreted to mean that the sc
£ that plane wave is zero. In other words,

tion of motion of a plane wave, with the electric vector o
the electric vector is normal to the direction of propagation. This result is a consequence of our
having (correctly) taken the F's to be-normal to the direction of propagation.

Suppose that we have two plane waves with rectangular components Pﬂu, m) and Pizu‘ m)
and cor i i and vertical Fi (¢, m) and Fy.,(t, m). (We use the
first subscript, in this case, k, on the F's to indicate the polarization, Hor V, in the same way
that we have used the first subscript on the P's to indicate which rectangular component, X, YOr z,

is meant.) Using (10), we find
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Py Pyt Py Pyt Py P

or, more compactly,
2By By ®
i

i = px =
so that, if P,y sz P1 B

21 2
TlRlf=5Z IF,| (10¢)
i K
Continuing the argument, we turn our attention to (9), which gives the field components in
terms of the rectangular plane-wave components. For a fixed value of 2, (9) relates a function

of (x,y) to a function of (£,m):

Ej(x,y.2) = gg (B, m) izmany mi2n(xttym) g g (9a)
zeconst. o h.

In the plane, z = constant, let E) have a Fourier transform, and assume that the inverse trans-
form also exists. The inverse transform could be written
E(x.y.2) - SS' (Pt m) &7 eriznlattym) g g
z=const. -0

But in the subregion, 2 + m? < 4, we have found that P{ = B It would appear that some "plane-
wave components," which leave the antenna in the fictitious directions, 2%+ m?> 1, but which
nevertheless may contribute to E;, are missing from (9a). Indeed, the fields produced by a
physical antenna on a plane in front of its aperture (z = constant) may vary so rapidly with posi-
tion, (x,y), that the Fourier transform of these ficlds cannot possibly be zero everywhere out-
side 2 + m? = 1. Let us examine the nature of the contribution to E; of these fictitious "plane-
wave components." Writing n in terms of £ and m,’
4E(x.y.2) = P, (t, m) e"i2Tixtymtz Vi-£2-m) y om

Outside of 1% + m? = 1 the radical is imaginary, and we must reconsider its sign. If n were posi-
tive imaginary, the contribution dE, (x,y, z) would increase exponentially with height z, which
would not be compatible with the chosen source location. But if n is negative imaginary, the
contribution decreases exponentially with height, which seems more reasonable.

Since the contribution to the fields from the B, (1, m) for which 1% + m? > 1 becomes negligible

at sufficiently great distances from the antenna, we associate the storage fields with these fic-

titious "p " The radiation fields, as we have already seen, are accounted
for by the components of those plane waves which travel in the real directions, 2 +m?<1. Thus
the complete expression for the fields is '

16
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w
_S‘S‘ By ‘m)e-JZw(x.l+ym+zn)dldm

2
1 is positive for 22 + m® <1
2, 2
n is negative imaginary for £+ m~”> 1

and the direct transform, giving the rectangular plane-wave components in terms of the fields, is

P2, m) SS E(x.y,2) Q2nlatymtzn) gy gy (2)
=

The height z is a parameter in both of these expressions. Note that the fields at any point in the
region above the xy-plane can be calculated from the P's using (11). Only two of these three rec-
{angular plane-wave components are required, since the three are interrelated by (10a). The
s are determined, in turn, through (12), by the fields on one of the planes, z = constant, above
the antenna.

The foregoing argument, although not rigorous, has provided a considerable physical inter=
pretation for the results, (11) and (12), and the supporting relations. The results can be made
rigorous by showing that the fields given by (11) satisfy Maxwell's equations in the region where
(11) is applicable, and that they match the boundary conditions appropriate to that region. The
Masxwell equations applicable to the electric field in the free-space upper hemisphere are the

wave equation and the divergence relation, usually written
and v-E=0

Since we have measured distances in wavelengths, the wave equation becomes, for the sinusoidal

steady state,

i —an’ K, i=xy.z
ax
nd for our purposes these expressions are a satisfactory approximation to the wave equation
when the E; are the complex instantaneous amplitudes of the field components of a typical modu=
lated wave. As may be seen by applying them to (11), these expressions are satisfied if £° +

m? + n? = 1,a5 we intend. The divergence relation may be written

8E, 0E, 0E,
5 ' oy T

and it is satisfied by (11) if
lFx*mPy-fnP (10a)

as we discovered previously.
The region of interest is the upper hemisphere, which has the xy-plane as its only boundary
near the source. The region will be excited by a physical antenna located in the vicinity of the

17
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1ds set up on
Thus, bound-

origin and somewhat below the xy-plane. Surely, the Fourier transform of the fiel

and the inverse transform will also exist.
The choice of sign for the direction cosine n,
riately in intensity at

the xy-plane by this antenna will exist,
ary conditions can be matched on the xy-plane.
given in (11), will insure that the fields given by (11) will decrease approp:

great distances from the origin.

Next we wili study the behavior of the fields at a point a great distance

reaylaet

from the antenna and in the (real) direction (10, mo‘no) in the upper hemisphere, so that the

point of space in question is

(x,y,2) = (rl°‘ rm, rno)

We expect the fields at that point to behave like

-jerr
E(rtg, rm,Tng) ~ S

so it is appropriate to evaluate the limit,

jorr
L= lim red*™ E(rt ,rm , rn )

roreo

ar > -j2nr(et +mm +nn )
lim rel S‘S‘ P2, m) e
rw

dt dm

Since we are interested in the far fields, only those plane-wave components for which

from (11).
n may be reduced to the upper hemisphere.

42 + m® < 1 will contribute, and the range of integratio
Using (8),
N -j2mr(te tmm +nn )
L= lim re?™ S B, m) e oo el g

T uh.

1t will be convenient to regard the exponent as the scalar product of two unit vectors: one, T,
. o
having the direction (1, my,n ), and the other, U, pointed at the incremental solid angle da:
jerr(1-T-T)

L= limr S nPi(l,m)e da

T uh.
The geometry of this integral is shown in Fig.5. We will integrate first around strips on the
unit sphere in which the scalar product U - Ty, and hence the entire exponent, is constant; then
we will add up the contributions of the strips. The strips are defined by circles of constant

18

UNCLASSIFIED

043R000500080007-

UNCLASSIFIED

Since the integral is taken only over

latitude, formed with the polar axis in the direction of 'ﬁo,
we may account for this condition by

the upper hemisphere, some of the strips are incomplete;

defining the integrand to be zero below the xy-plane v

UPPER HALF OF

" UNIT SPHERE

SPHERE

2

Fig. 6. The strips are parallel to the

Fig.5. U - D’o is constant throughout one of
Ap-plane in the new coordinate system.

the strips.
The integration is facilitated by taking new axes, (A, V),
The new variables of integration will be the direction

We will define

in such a way that the directions

of v and T coincide, as shown in Fig. 6.

cosine v and the azimuthal angle © defined with the polar axis in the v-direction.

nBt,m for >0
Q(v,8) = {
for n<0
With these changes, the limit becomes

1 2T
im r‘g‘ glemrit-y) _dv S Qw,0) N1 -
-1 VZ 0

12

1
r+e

1 27
lim rS‘ edzmrit-v) de‘ Q(v,0) do
oy o

1 N
lim rS\ q) 2 gy
e -1

21
qv) = S‘o Qlv,®) d®

we will not attempt an explicit expression for the function q(v), some of its proper=

Although
ties are of interest. e Fourier trans-
£ the components of the electric field set up on the xy-plane by a phy
bounded functions of direction in the upper hemisphere. The function q(v) is an
eneral) a continuous, bounded

The rectangular plane-wave components B, which are th
forms of sical antenna, will
be continuous,

integral of one of the P) over a strip having a length that is also (in g

19
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function of v; thus, q(v) will be a continuous, bounded function of v in the range —1 < v < 1. (In und the vertical component, having the same direction as Fy. is

the particular case where the direction of T, is the vertical, the strip length will be discontin= o o v
lawl wous at the point ¥ =n =0, corresponding ‘m the houzon;l "o o o7 E, + JT: + ”’UZ E,

but the integrand n P, decreases continuously to zero witl o

1 at that point, making a(¥) again continuous and bounded.) o

Also, since we are interested in directions 'ﬁo in the upper Using (13) to write the far fields in terms of the rectangular plane-wave components, and (10)

hemisphere, the value q(-1) would involve only contribu= to convert to the horizontal and vertical plane-wave components, there results, for large dis-

tions from the lower hemisphere; in other words, a(=1) = 0. tances r,

A representative plot of la(v) | is given in Fig.7 -

F'Q-Z(‘_";(Z’o‘_’ continuous and bounded, Consider the following integration by parts: By (vt emg,ng) = § Fyg i mg) -

-1 1

1 1 -
S 2rEUY) g = q(t) — gt + 32““5‘ vy 327 4y
1 -1 -jenr
E_(rf_,rm_rn) = | Fy (£, m.)
The second member on the right has been shown to be zero, and as r—+w, the left-hand side goes Voo o o o' o r

1o zero according to the Riemann-Lebesque lemma. Thus, in the limit,

! 2nr(1-v)
0 = q(1) — 0 + j2r lim rg q() e3¢ dv
rew Y1 At a great distance, R = Ar meters, A being the wavelength, the Poynting vector is directed

away from the antenna. Its magnitude,

2 —2
j2rr(1-v) g, > \E‘| watts/meter’
i

1
L= lim!‘S q(v) e =4 e
r—w -1

Conor (n = characteristic impedance of free space)
=L 1,0) d6 = jn_ Pt ,m) -
i SD Q.0 3ng By (e o) is the power from the antenna crossing a square meter of the surface of a sphere of radius R
imeters, centered at the origin. The solid angle subtended by that square meter at the origin is

We have shown that

L= lim rel?™

ree

Ej(rt, v, t) = §ng B (g, mo) (13)
and the angular density of power from the antenna is

which means that, at great distances r from the antenna, the electric field components in the N
direction (L, m, n,) are w==S =B S |E | watts/solid angle
Ay T 2n i
e i
Ert_,rm_,tn) % in P (L, m) . )
(Pl T TR o Fille ™) T The concept of an angular density of power is useful for the purposes of this paper. When we

refer to a power density, we will mean an angular density.

We note that the far field propagates in the direction away from the antenna, and that, since its
Using (13) and (10c), the density of power leaving the antenna and progressing in the direc-

components are proportional to the cor d pl the total

electric field is normal to the direction of propagation. tion (¢, m) is

The far field may also be described in terms of the i 1 and vertical pl com- (Ar)l 2 2
ponents, Fyy and Fy. At the distant point (rlo, I, rn,), the horizontal component of the total w (e, m) = =5 S IR, m |
electric field, which has the same direction as Fy in Fig.4, is !

2 2

A 2 2_A 2

i PRIAGE =Z—nz [Fyle,m <
i k

m, 3
E ¢ —— 3
2 2 JT—Z
lo +m° l°+mo . i

20
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and the total power emitted from the antenna is g o dm 5‘( E (.3, 0) Gdemixtym) g dy
2 o
A 2
F de
W= > g |Fy €, m) |
k u'h.

1y, o) @ ALYy m) gt dyt

2 2
- 2"7 M S‘S‘ n | B (e, m)|” dtdm

iu.h. or with x' =x+u, y'=y+v,

’ X\ 2 v
- ZRe{S‘S‘anJU,m)IZ @ dm} w-ss S‘S‘ natam (1 £y, ax
! - i o

since n is imaginary outside of 12 + m® = 1

The ratio x W EHxtu, y+v, 0) erizntuttvim) g gy
wit, m) -
w
which becomes
imay be called the gain of the antenna in the direction (£, m): neglecting antenna losses, the ratio

2

N N " " 2 >

4 nis - - '

multiplied by 47 is the gain relative to the gain of an "isotropic radiator we-A s (S‘ du dv (‘V n e-i2nl +vm) g 4
Before closing this section, we will digress to develop expressions for the transmitted power n <) 2

i - v

in terms of the near fields of the antenna. Starting with the last form of (16) and using (12),

2 X | o X E.(x,y,0) E¥x +u, y +v, 0)dxdy
w :% ZRe{SS‘ n B4, m) & dm g‘g Ef(x,y,0) e Ty dy} . S‘g i i

¢ when the order of integration is changed. The last integral is the spatial auto-correlation of
Changing the order of integration,
field components on the xy-plane:

2

A -j2n(xg+ym) © .
A SRe S‘S‘ ¥ (x,y,0) gg ) omiZnlxtty

W=33 % { ) Ef (x,y,0) dx dy N nP (1,m) e dt dm ) ¢;(u,v) = (S‘ E;(x.y,0) x+u, y+v, 0)dxdy (18)

and the last integral is recogrized from (11) to be i

The second integral, which plays the role of a weighting function, is the Fourier transform of

9E;(x,y, 0 the real part of the direction cosine n:
£
[ 2 _xj2m(ut+vm)
so that the transmitted power can be written N (u,v) = S\S‘ 12 -m? ™ df dm
u.h.

9

2 % 8E(x,y,0
LEF ) RE{ﬁ gg Ef (x.y,0) %’(’ dx dy} , “n This integral is best evaluated in spherical coordinates and with repeated reference to Watson.
i

At first, let £ = pcos©, m = psin®, so that

which gives the transmitied power in terms of the fields and their 2-derivatives on the xy-plane. N (o) = S“ odp S‘Z" de[ 1 2 etizmelu cosotv sme)]
The same result could have been obtained by integrating the real part of the vertical component r o .
of the Poynting vector over the xy-plane. Next we seek an expression for the transmitted power

N : . '
involving only the fields on the xy-plane. Starting again with (16) and using (12) to express both =2m S\ pN1 - & JD(Z"F Ju? + "Z) de -
P, and P}, °

22 23
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Then let p = sin¢ IV. DESCRIPTION OF SCATTER
/2 (242 2
N(u,v) = 2r Jo(z“ u® v smrﬁ) siné cos” ¢do It will be convenient to describe the scattered fields arriving at the receiving site in the

same lerms that were used in Sec, III to describe the fields that would be produced by the

(z o+
A+ v
/

e/
3/2

(el 72

receiving antenna if it were excited with a unit current. The same coordinate system (Fig.4)
and similar notation will be used. The electric field components of the arriving radiation will
be called E, (x,y,2). Similarly, the horizontal and vertical plane-wave components arriving
sin (n Ji& ) - from the direction (£, m) in the upper hemisphere will be designated F (4, m), and the corre-
—_— — cos (2wu . sponding rectangular plane-wave components will be P, (1,m). The second subscript, a, will
be used to indicate arriving quantities. The phases of the F) (£, m) and of the F; (¢, m) (and
also the amplitudes of these quantities when £2 + m? > 1) will again be referred to the origin
In terms of the auto-correlation of field components on the xy-plane, (18), and the weighting of coordinates.
function, (19), the transmitted power may be written We will assume that all the sources of radiation incident on the receiving antenna are
w located above the xy-plane. Physically, this radiation will be reflected (or scattered) from the
W= z«; s W N, () 0 (u,) du dv receiving antenna and other obstacles below ‘hfl xy-plane, so that the total field above the
v xy-plane will be a superposition of the incident fields and the fields reflected from below the
xy-plane. The reflected fields will depend in part on the structure of the receivingantenna and
its surroundings, but the incident fields will depend only on the transmitter and its antenna, the
scattering mechanism and the geographical location of the receiving site. We will use only the
incident fields (not the total fields) to describe the arriving scatter radiation. The field com-
ponents E,_, then, pertain only to the incident fields; they may, however, be regarded as the
total field components that would be present if the receiving antenna and other reflectingobjects
were removed from below the xy-plane, leaving free space. Similarly, the plane-wave com-
ponents F and By represent plane waves arriving only from above the xy-plane; if they
correspond to the total field, the lower hemisphere must be free space. This restriction to
incident fields only will have to be considered again when the density of power arriving from
the scattering region is to be measured in terms of the incident fields.
The arguments of the last section leading up to and justifying (11) and (12) could be repeated
almost word-for-word for the arriving quantities. The result would also be similar: the expres-

sion for the arriving fields is

Byl y.7) = S‘S B (1, m) I2TOHMEN) 4y gy

2

n is positive for 42 + m2 <1

n is negative imaginary for £%.+ m% > 1

and the direct transform, giving the rectangular pl in terms of the fields,

is

B (,m) = gS‘ B (xy,2) -iambaetymizn) 4y gy

i 25
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and also the exponents in (12) and (22), have opposite

This is because the transmitted fields, which leave in the direction (£, m) are propagat-

Note that the exponents in (11) and (21),
signs.
ing in the opposite direction from the arriving fields, which arrivc (rom the direction (¢, m).
Making the direction cosine n again negative imaginary for 22+ m? > 1 insures that the

storage fields die out at the greater distances (more negative z this time) from the source. In
fact, it will usually be reasonable to assume that the storage fields of the source do not contrib-
ute to the fields arriving at the receiving site. In these cases, P, (1,m) = 0 for 2 em? >,
and the range of integration in (21) may be reduced to the upper hemisphere.

and the rec-

The relations (10) between the hori 1 and vertical p
tangular planc-wave components do not depend on the
They are also valid for the arriving quantities.

Up to this point, we have not mentioned the magnetic fields that must accompany the cor-
responding electric fields. In general, since the magnetic field can be computed from the
clectric field with the aid of the appropriate Maxwell equation, it is not necessary to be con-
cerned with the magnetic fields. However, magnetic quantities will be convenient in the forth-
coming determination of the open-circuit voltage at the receiving-antenna terminals due to an
arriving scatter signal.

Temporarily, then, we introduce the arriving mpgnetic-field components H; (x,y, z) and
Al m), the (magnetic) r The
By analogy with (21),

their Fourier transforms Q; tangular pl
magnetic field also obeys the wave equation and a divergence relation.

(22) and (10a),

H(x,y,2) = S‘g Qs m) 2OV gy

n is positive for £2 + m% < 1

n is negative imaginary for 22 + m% > 1

Qplt m) = gf By Gy, 2) e TV gy gy (24)

1Qx+mQy+nQZ (25)

The similarity here is so complete that no comment is required.
Next, we relate the arriving magnetic fields to the arriving electric fields, using the Max-
well curl equation which is usually written

In the present circumstances (sinusoidal steady state, free space, and distances measured in
wavelengths), this equation may be written

26
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0E1a BEya
T T

oE,
-2 = -pmH

aExa

dz ya

aEXa

OEa Era _ _
ay

- H
7% jemn

za

or, in terms of the arriving r pl from (21) and (23),

mP, —n Pya =1 Qyuy

- 1P

" P za™ "1 a

1P a—mea -NQ,,

1t is enlightening to summarize in vector notation. Let P,(1,m) be an electric vector having

the components Pya(t, m), P (£, m) and P (1 m); let Q (2, m) be the corresponding magnetic

vector; and let U(f, m) be a ector in the Hirection (4, m) The wave equation requires that
Uu-U=1 .

so that U is a unit vector. The divergence relations may be written

G . ; (10a")

U-Q (25")

and the curl equations become

Although these vector equations have meaning only for the real directions, their algebraic

counlerparts, written in terms of the direction cosines, are also valid for the fictitious direc-
ln view of the definition of the Poynting vector, it is clear

tions l +m“ > 1, as we have seen.

from either of the curl equations that P (1, m) and Q (¢, m) represent radiation that is propagat-
In any case, the signs of the vector products would

It may also be seen that a

ing in the opposite direction from that or T,
have been reversed if we had been describing the transmitted fields.

number of these vector relations are redundant.
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Now we are ready to develop an expression for the open-circuit voltage V at the receiving
antenna terminals due to an arriving scatter signal. As suggested by Fig. 8, we will calculate

the open-circuit voltage at the terminals of a small test dipole when the receiving antenna is

z z

RECEIVING
ANTENNA

TEST
0IPOLE

(b.)

Fig.8. The current source and voltmeter may be interchanged
without affecting the voltmeter reading.

excited with a radio-frequency current of one ampere; then we will use reciprocity to infer
that the same open-circuit voltage would appear at the terminals of the receiving antenna if,
instead, the test dipole carried unit current. Let the test dipole be located at the point (x,y, 2)
above the xy-plane, let it be oriented in the i-(x-, y- or z-) direction, and let it have an effec-
tive length of a meters, short compared with the wavelength. The open-circuit voltage at its
terminals, caused by excitation of the receiving antenna, is then

V=aBxy2 .

and the same voltage would appear at the receiving-antenna terminals if the test dipole were
excited with one ampere.

On the other hand, the scatter fields arrive from a variety of directions, producing very
complex field patterns at the receiving site. A single test dipole could hardly be expected to
reproduce such patterns. Tentatively, we suppose that a current sheet on some plane, z =
constant, above the xy-plane is capable of producing field patterns that duplicate the scatter-
field patterns in the vicinity of the antenna. The current sheet may be considered to arise from
an infinite array of incremental test dipoles, oriented in the x- and y-directions on the plane
2 = constant and excited with different currents. Since we know the open-circuit voltage at the
receiving-antenna terminals due to the excitation of each of these dipoles, these contributions
may be superposed to obtain the open-circuit voltage due to the current sheet.

Let the components of the linear current density on the sheet be J (x,y, ) and J_(x,y, 2)
amperes/meter. Consider an incremental rectangle bounded by (x, x + dx) and (y,y + dy) in
the plane z = constant. The total current flowing in the x-direction in this rectangle is
(Ady) J_(x,y,2) amperes, and the effective length of this rectangle of current is Adx meters.
Its contribution to the open-circuit voltage is therefore

28
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av = — (Adx) L‘X(x,y,z) (Ady) Jx(x, ¥, 2)

(The negative sign avises from the polarity conventions shown in Fig.8.) Superposing the con-

tributions from all the and all the of current density on the sheet,

we obtain the open-circuit voltage due to the current sheet:

2 o -
V= A S‘g (B, 3, +EJ)) dx dy

The Biot-Savart law states that the magnetomotive force around a closed loop equals the
net current enclosed; directions are given by the right-hand rule. If the loop lies in the
yz-plane with horizontal sides just above and just below the current sheet, as shown in Fig.9,

3 i eng! hi
the current involved will be related to J,. If the loop has differential le ngth dy and vanishing

height dz << dy, so that displacement currents can be neglected, we have

- +
(Ady) 3 (x,y,2) = (Ady) lHy(X.y. z) —Hy (Y, z2)]

J_=H  —-H M

x Ty Y

where, as in Fig.9, HY and 1 are the y-components of the magnetic field just above and just

below the current sheet. Inorder to compare the fields due to the current sheet with the
incident scatter fields, we imagine that the re-
ceiving antenna and other reflecting objects are
removed from below the xy-plane, leaving free
space. In this case, the tangential magnetic
fields above and below the current sheet are
equal in amplitude and opposite in direction:

_HY=HS sothat J =2HJ
y Ty y

The corresponding relation,

—2H
y x

ined
Fig.9. A loop in a vertical plane encloses current for the other components could be obtained by

flowing horizontally on the sheet . applying the Biot-Savart law to a similar loop
in the xz-plane. In terms of the magnetic field
tangential to a plane just below the current sheet, the open-circuit voltage of the receiving an-

tenna is
2 -_ -
V=24 SS‘ (Ey Hx Ex Hy) dx dy

At this point in the discussion, the region below the current sheet is free space. Accord-
ingly, H; and H; must be components of a magnetic field that is propagating into the lower
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hemisphere. The ding pl s are given by (24), and the missing
vertical component is then given by (25). The magnetic fields anywhere below the current sheet
could be calculated from (23), and the corresponding electric fields could be calculated from
(26), (10a) and (21). In short, the fields anywhere below the current sheet arc completely
determined by the tangential magnetic field components H_ and H. on a plane just below
the current sheet. Since this tangential magnetic field is proportional, in turn, to the density
of current on the sheet, we conclude that the current sheet is capable of reproducing the field

patterns of the arriving scatter radiation at the receiving site, and we deduce that
= 2 E -
V=24 S‘S (B Hy, — B H ) dxdy (27

is a general expression for the open-circuit voltage at the terminals of the receiving antenna in
terms of the arriving magnetic field and the electric field produced by the antenna when it is
excited with one ampere.

Using (23) to express the magnetic field components in (27), we have

_aA2 . e j2m(xe+ym+zn)
V=24 SS dx dy S‘g (B, Q, —E, Q) e dedm

and, after reversing the order of integration, we recognize the second integrals as (12). Ac-
cordingly,

= 2A2
V=24 SS‘ (Py Quq — Py Q) d dm

Using (26) to write the magnetic plane-wave components in terms of the electric plane-wave
components, and using (10a), the open-circuit voltage can be written more compactly in terms
of electric plane-wave components only:

242
V=S > S‘S‘ n P, m) Py (e, m) drdm . (28)
i e

A word of caution about (28) is in order. This relation is valid even if the sources of the
arriving radiation are near the receiving antenna; it is valid for the current sheet, for example.
But when the current in the current sheet is turned off so that the pattern of the receiving an-
tenna can be measured, nothing but free space is left where the sheet had been; the current
sheet does not disturb the field pattern of the receiving antenna. A physical source near the
receiving antenna, on the other hand, would generally reflect some of the fields from the an-
tenna, which would invalidate (28). In that case, (27) would be valid if E_ and E_ were inter-
preted as components of the total field on the plane z = constant when thexrecew)ng antenna is
excited with unit current and the nearby source is turned off (voltage sources short-circuited
and current sources open-circuited).
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However, we shall assume that the sources of the arriving scatter fields are at great enough
distances so that they do not affect the fields produced when the receiving antenna is excited. We
shall also assume that the storage-field region of these sources does not extend to the receiving
site. The scatter fields, then, will arrive only from the real directions, so that the range of

integration in (28) may be reduced to cover only the upper hemisphere:

> SS\ n P, m) Py (1, m) df dm

i wh.

> g Fylt, m) Fy (4, m) dQ
k u.h.

from (10b).

Having developed expressions for the open-circuit voltage at the receiving-antenna terminals
due to an arriving scatter signal, (29), and for the total power radiated when the antenna isdriven
with unit current, (16), we can now write an expression for the time-average signal power avail-
able at the antenna terminals. In terms of the unit current and the radiation resistance R, of the
antenna, the radiated power is W = 1/2 mz R, and, neglecting antenna losses, the mean avail-
able signal power is

W
a

2
S‘ Fy(t, m) F} (¢, m) 40
u.h,
s § mem?ae
i uwh
Next we manipulate the numerator N of this expression for mean power, making use of the as-
sumption of incoherence discussed in Sec. II. It should be noted that only the arriving quantities

Fy, and Fy, are time-dependent; the time average will apply to them. Using second, similar
set of directional variables such that

qqr = W dm!
we have
N= 23 g F,(t, m) d9 S F',m') F 0, m) Fr(f,m)ade'
i k u.h. u.h.

or with£' =¢+A, m'=m +g,
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N=Y 3 5‘ F,(£, m) 49
ik uh

oy

X S‘ F‘t (£+A, m+p) Fm(l, m) Fk'a(l +A, m+p) o

The second (double) integral involves the cross-correlation between arriving plane-wave com-

ponents. The angular separation between the directions of arrival of the two components is

given by the variables of integration A and u, which are the differences in the direction cosines.

As in Sec. II, we assume that the cross-correlation
) FE (LT A, m
F m) FE@+x, m+p)

will be non-zero only for such a small range of directions of arrival (A, ) that the antenna pat-
tern will be constant over that range:

Fk‘(l +A, m+p) R FL’S(L m}

The direction cosine n', which generally varies more slowly with direction than the antenna
pattern, will also remain constant over the range of appreciable contribution to the second
integral. Finally, the range of integration, which strictly speaking is a displaced unit circle,
may be extended without changing the value of the integral. With these changes, the numerator
becomes
N=3 S g Fy(t, m) Fp(t, m) de
i

u.h.

= Sg F (L m FE(+X, m+y) dhds

and the available power may be written

2z S Fy(t,m) F(t, m) (1, m) d@
i k _u.h.

b S‘ 1E(e, m) (2 an
i wh

in terms of the quantities

2, m) = % S‘S‘ Fm FEU+X, m+p)dide (31)

which we recognize from (30) to be proportional to the densities of power arriving from the di-
rection (£,m). The power i are the

I Hlem

but it will sometimes be convenient to refer to the 's as power densities,
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Suppose that the antenna emits only horizontally-polarized waves when it is excited, so that
the available ¢ignal power is
P 2
[Fyte, m)|* @y (e, m) d@
-h. o

g [Fyyte,m? ae
wh.

Let the power-density pattern have a maximum in the direction U, _, as shown in Fig. 10 It is
then clear that, for maximum power, the antenna pattern
should be a thin spike in the direction U, , because a
change to any other pattern of the same "area" would re-
duce the numerator integral, leaving the value of the de-
nominator integral unchanged. Of course, such an opti-
mization would require unreasonably large antenna-
aperture dimensions. We will discover that, in general,

Fig.10. The available power is maximized if the aperture is specified, the optimum antenna has
by the antenna having o pattern that is
sharply peaked in the direction of meximum
power density. pattern will be clustered about the direction of maximum

almost, .but not quite, maximum plane-wave gain; its

power density.
The case of antenna noise is also of interest. If "hot spots" in the sky are neglected, an-
tenna noise may be considered to arise from a uniform distribution over the upper hemisphere

of incoherent sources of all polarizations, such that the power densities are

@yy(tm) = eyylm) =@ a constant

Syyltm) = @y m) =0

The available noise power is, from (30),

2 2,
§ dmgl® e irylt e, a0
u.h.

§ ryl + 1mylh an
u.h.
which is independent of the antenna pattern. Apparently, the antenna pattern that maximizes
the mean signal power will also maximize the signal-to-noise ratio, since the noise power will
not be affected by the pattern adjustment.
We have finally arrived at the core of the problem. From the point of view of the antenna de-

signer, the power densities are y and suffi data for the designof an optimum antenna.

His jobis to produce an antenna having a pattern, determined by the F,(#, mjwhich maximizes the

available power, (30), subject to appropriate restrictions. The proprietor of the iving site,
on the otherhand, willdescribe the power densities to the designer and specify some of the restric-
tions. Section V will be givento adiscussion of the power densities and suggestions for their meas-
urement; the following sections will deal with some of the antenna designer's problems.
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DETERMINATION OF POWER DENSITY

1t should be emphasized that four power densities, given by (31) in terms of the arriving
plane-wave components, were required to express the mean signal power available at the
receiving-antenna terminals, (30). Since the numerator of (30), being a squared magnitude,

is a real, non-negative number for any antenna pattern (for any set of Fy's), it must be that
Ce*
dplem) = a5yl m)

that the self-densities &y and évv are real non-negative quantities, and that the matrix of

power densities

dpltm) Pyl m)

[2(e,m)] =
dyylm) @yl m

\s Hermitian, with a non-negative determinant. For a particular direction, (£, m), the deter~
minant becomes zero if and only if the polarization of the plane wave arriving from (4, m) re-
mains fixed in time as the signal fades. In this special case, the incoming radiation could be
described in terms of two power densities but, in general, three are required; it will be con-
Jenient to retain all four to preserve symmetry. If the available power had been written in

1 nine power ities would have

terms of the p:
resulted; these could, however, have been reduced to the above four with the aid of the rela-
tions (10).

It is the purpose of this section, then, to suggest means for determining the four power=
density patterns: the four average quantities that describe the arriving scatter radiation. At
the outset, it should be noted that, since the recorded strengths of received scatter signals
generally show seasonal as well as diurnal trends, certainly the amplitudes and very possibly
also the shapes of the power-density patterns may show corr ding long-term
If the patterns are to be used in the design of an optimum fixed receiving antenna that is ex-
pected to deliver maximum mean signal power for its useful life, the power densities should be
averages that are taken over periods of time long compared with the periods of variation of the
received signal strength. Averaging periods at least of the order of several years are indicated!

On the other hand, the proprietor of the receiving site might want instead an antenna that
delivers maximum mean power during periods of weak received signal. In that case, he should
average the power densities only during such periods. Of course, the power-density patterns
characteristic of weak-signal periods might show more statistical regularity, o that shorter
averaging times could be employed. Nevertheless, a program of measurement of the power
densities is likely to be a very long one. It may be desirable instead to estimate the power-

density patterns from one of the theories of the g ism and a of the

transmitting-antenna pattern.
*
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Throughout the remainder of this section we will suppose that the power densities are to
be measured. Questions as to when and for how long to average are left to the judgment of the
proprietor of the receiving site; our object will be to suggest methods of measurement.

One of the rectangular power densities, which we will call
et = (( P BT TR e d
Vaem) = §§ PEmI BEGFA MW e,

can be expressed in terms of the arriving fields as follows:

¥ ikl m) = P (4, m) E¥ (0,0,0)

= S‘f 6 o y) eIV gy gy

in which

i y) = B0y, 0) EE(0,0,0) (35)

[We have used (21) and (22).] A method of measurement suggests itself immediately: Voltages
proportional to the fields at two points on the xy-plane would be available at the terminals of a
pair of appropriately placed dipoles. The Fourier transform of (35), the temporal cross-
correlation of the fields, is the rectangular power density. The cross-correlation should be
measured with one dipole located at the origin and the other located, in turn, at each of a suf-
ficient number of points (x,y, 0) on the xy-plane to determine the behavior of iy (x, y) through-

Pue Vye 14! W

out the plane.
WTRLER WIXER
Voe!toms

wvgem!
SALANGED woDULATOR
ILATO! et
oscLaTon
fef{uv}

BALANCED MODULATOR

Fig. 11. The radio-freq

y portion of a I

Figure 11 is a block diagram showing the essential parts of the circuitry that might be used
to cross-correlate the dipole voltages V, and V,; the simpler circuit of Fig. 12 could be used to
obtain ¢ (0, 0), the "cross-correlation" for identically oriented dipoles at the same point in

space. A radian carrier frequency w; is assumed for the arriving signal, and a local oscillator

of radian frequency w, < w, is shown in Fig. 11. It is assumed that the output circuits of the
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SQUARER PEAK DETECTOR

>t W2

!

vZei2ust

T yert

Fig. 12, The auto-correlator is just a watt-hour meter.

four multiplying elements shown in Fig. 14 include filters that reject all but the difference-
frequency component of the inputs. The balanced-modulator outputs are the direct ("d-c")
voltages,

and

Re {V, V,#} am{ v, Vb

10

which could be averaged, for example, by Miller integ and rded at appropr

intervals. In terms of these averages, the cross-correlation of the fields is

ACES Re{V, V} +j JIm{ViV—Z;")

the proportionality constant being determined by the gain of the system. Again in Fig. 12 it is
assumed that the output circuit of the squarer includes a filter to reject all but the second har-
monic. The peak detector output |V,|® should be similarly averaged to obtain a quantity pro-
2ii(0 0)-

Only four rectangular power densities need be measured.

we will work with the four rectangular densities that would be measured with x- and y-oriented

portional to ¢
For purposes of illustration,

dipoles, although this choice is quite arbitrary. The "horizontal- and vertical-power densities,"
(32), can then be obtained from the measured y ;. 's with the aid of the relations (10). The nec-
essary algebra, however, is somewhat tedious. At the risk of clouding the main issues, we will
introduce matrix notation to simplify the algebraic manipulations. Suppose then, that we have

the elements of the matrix

gt )

Vol ™) (2
lhglem) =
1, Yoyl
™) Yyt m)
of rectangular power densities, measured with x- and y-oriented dipoles only. Define the fol-
lowing column matrices:
P, lt,m) Pyt m)
Plem)] =
P (m)

Fm) =
FVa(l’ m)
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he relation betws F] is given by tion matrix that has oefficients
T lation between P] and F] is given by the transformati h the coe ni

of the first two of equations (10) as elements:

) z
aNe +m £ +m

Note that the determinant of the T-matrix is

1
[(remil =5
. 2 2 _— .
so that [T] may be inverted freely except possibly for the directions £ +m corresponding
to the horizon. According to (10), the relation between P] and F] is
Pl=[TIXF] ; Fl=(T"1xP] . (39)
We will write the transpose of F) as
-1
E =R X[T)] N
reserving the star to mean that the complex conjugate is to be taken.
The matrix of power densities, (32), may now be written

(@l m) =+ S.S‘Faﬁ.m)]xF;un m didp

-
S — 1
L Sg (T, m))™ X BB mI X AL A, m ) X [T+ A, m + )" dx du
etk mry
The elements of [T] will remain essentially constant over the range of appreciable contribution
to the integral, so the T-matrices may be removed from the integral. We recognize the re-
maining integral as [wau. m)], giving the result

(el m)] = & (T m)) ™ X [y 6 m) x (T, m), 7t (40)

To recapitulate, the cross-correlations of x- and y-fields on the xy-plane (35) are measured,
these four quantities are transformed (34), giving the clements of the § ,-matrix (36), which,
when operated on by the T-matrix (38), gives the matrix of power densities (40).

But there is a fundamental difficulty with this procedure for measuring the power densities:
We have tacitly assumed that the total field at each of the measuring dipoles is the incident field
arriving from the scattering region; no fields reflected from below the xy-plane are assumed
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present. In other words, we have assumed that the region below the xy-plane is free space. In
some cases, this assumption may be reasonable, but usually an antenna will be erected over a
more or less level ground, which must be taken into consideration in measuring the arriving
power densities.

If the ground at the receiving site is smooth enough, if irregularities in the terrain are
much smaller than a wavelength, the reflected fields are easily calculated. In this case, the
foregoing measurement procedure may be re-interpreted to account for the presence of the
z ground. We will suppose that the xy-plane is
weoeT parallel to the ground and at a distance h wave-
lengths above the ground. Cross-correlations

€0GE OFXY-PLARE  ay be measured as before on the xy-plane or
(your of pace)
ReFLecTeD

WAVE

on some other plane that is tilted with respect
{Enas oF to the ground. We will start by interpreting
GROUND PLANE cross-correlation measurements on the xy-

plane over a lossy, but otherwise smooth,

WaGE OF (x,y, 21 homogeneous ground.
toyez-zm Receiving-site geometry is shown in

Fig. 13. The reflected wave travels o greater distance £ 1>+ It may be seen that the reflected

o the incident wove. waves arriving at the point (x,y, ) above the
ground travel a greater distance than the cor-
responding incident waves. This extra dis-
tance is just accounted for by calculating the
phase of a reflected wave as though it were
not reflected, but continued instead, in the

INCIOENT ReFLECTED
oot o absence of the ground, to the image of the

point (x,y, 2).
On being reflected, the wave will suffer
EDGE OF GROUND PLANE an additional phase shift and attenuation, which

Fig. 14. The incident and reflected waves very close Wil depend on the angle of incidence and the
fo the ground. polarization. This effect may be accounted

for by assigning reflection coefficients
pH(l, m) and pv(l, m) to the reflected horizontal and vertical plane-wave components. Sign con-
ventions for the reflection coefficients are shown in Fig. 14. Note that the reflected horizontal
component py; Fyy. contributes to the x- and y-fields with the same sign as the incident horizontal
component; the reflected vertical component py Fy,, however, contributes to the tangential fields
with the opposite sign from the incident vertical component. If the ground were a perfect con-
ductor, pyy = —1and py = +1, 50 that both reflected components would contribute to the tangen-
tial fields with opposite signs from the incident components.
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Pyt m)
plt,m)) =

—pyle, m)

We suppose that the elements of the matrix,

x,¥)] = E_(x, y)] X E*(0, 0) , 45
(6 0590) = Bl )T E300,0 (45)
of cross-correlations of x- and y-fields on the xy-plane have been measured, and we wish to
determine the power densities from them. From (42),

19,05, )] = SS T, m)] ™) gy

oitx(zeh) i

) emitn(zHan, Foltm) x S‘S‘ F (6, m)] X F (¢, m") x (T3, m")], daf' dm!

If the height h of the measurement plane is not too great, [T#], will remain essentially constant
over the range of appreciable contribution to the second integral; it may be removed from the
integral, which is then recognized as n[#(z, m)]. Consolidating,

ol j2nats - 2n(xtrym)
- \( (T, m) X Pyl m)) 270 10 e )] = 7 [ppltsm)] 2T gy am

from which
[wp(z. m)] = [T (t,m)] X (&(2, m)] X [T, m)],

(Tpltsm] = (O m)] X {{1] + 7 gy, my); - _
= SS‘ EXCR) rizmlxttym) gy 4y

(B, mi] = 2 (T m ™ x [yt mi x (a7 (47

The result has the same form as (40), in which the ground was assumed absent: The cross-

correlation matrix, (45), is measured, transformed (46), and operated on by the T, -matrix,
(43), to give the result, (47). It may be noted that, if the ground is a perfect conductor, (47)
reduces to
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S S— P P TR R mn ! (472)

[2(s,m)] =
T

Given cross-correlation measurements on the xy-plane but no information about the sur-

roundings of the plane or its orientation with respect to the scattering region, we are able to
determine the direction cosines £ and m of the power density impinging on the plane, but we

are not able to determine the sign of the direction cosine n of the arriving power density. In
other words, we are not able to distinguish between power density arriving from a point above
the measurement plane and power density arriving from the image of that pownt below the meas-
urement plane. We were able to interpret measurements on a plane parallel to the ground be-
cause we knew that the scattering region must be above the plane and that plane waves arriving
from below the plane must be reflected copies of the incident plane waves. If the measurement
plane were tilted with respect to the ground, however, it would be possible for incident radia-~
tion to arrive from both sides of the plane. Nevertheless, it will generally be possible to orient
a tilted measurement plane with respect to the scattering region in such a way that we are rea-
sonably sure that the incident plane waves arrive only from one side of the plane.

Next we will interpret cross-correlation measurements on a vertical plane above the ground:
the xz-plane of Fig.13. We suppose that the positive y-axis is oriented in the general direction
of the transmitter, so that all incident radiation arrives with a positive direction cosine m. We
will obtain a two-lobed power-density pattern: One lobe will extend above the ground in front of
the xz-plane, and the other lobe, below the ground, will be the somewhat attenuated image of the
first because of ground reflection. At first glance, it would appear that these two lobes, taken
together, could be delivered to the antenna designer as the power-density pattern for the design
of an optimum antenna to be erected at the origin of coordinates in Fig.413. This, however,
would be a mistake! A plane wave arriving from above the xy-plane is perfectly correlated
with the corresponding plane wave that is reflected from the ground and arrives from the image

direction below the xy-plane, so that the a; of incoherence, d d in Sec. II, is
not valid for the superposition of incident and reflected plane waves. As we shall see, the two
lobes will be scalloped by alternate constructive and destructive interference between incident
and reflected waves. The angular locations of the scallops will depend critically on the height h
of the reference dipole used in the measurement. In contrast, if any two arriving plane-wave
components were uncorrelated unless they arrived from nearly coincident directions, as re-
quired by the assumption of incoherence, the power densities would be, for all practical pur-
poses, independent of the location of the referen

dipole used in g them.
The proprietor of the receiving site should measure the densities of incident power and de-
liver these, together with the ground-reflection coefficients, to the antenna designer for his
consideration.

Returning to the problem at hand, we may write the column matrix of x- and y-field com-
ponents on the xz-plane, which is normal to the ground as
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B, (x0,2)

E 0,z
yg(x‘ ,2)

- &( (e, m) X 14) 4 HHER 0 gt xR (1, m)) 274 4 g

from (38), (41) and (44). The cross-correlation matrix to be measured is

16,(x,2)] = B (x, 2] XEX(0,0 . “9)

o
In writing an expression for this matrix in terms of the power densities, it will be convenient

to convert one of the ingredients (48) into an integral over the direction cosines £ and n, m being
determined as the positive square root of 1 —¢% —n’:

df dm = ndQ = =
m

dg dn
In this way, (49) becomes

-j4n(z+h)n jam(xe+zn) 2 4ran

[pl2, m)]} e

[¢,0x,2)] = gg [T, mx{[1] +e

x gg F(, m] X PR, m) X {[4] + 4T [k, m)]} X [T(2, m)], df' dm'
Latr

As before, if the height h of the reference dipole is not too great, the last two factors may be

removed from the second integral, which is then recognized as n[@]. The result,

o,
[¢,(x2)] = SS "; Gizmixetan) 4y 4n

j4mhn

x ()% { (4] + e 4R () x @y (4] + T R (T]

however, is not in the desirable form of a Fourier transform because of the function of z,
-itn(zthin

appearing in the integrand. This difficulty may be remedied by splitting [4,] into

the sum of two integrals:

2

- (o

[oy0x,2)] = SS ™
=

-, .
+5‘S o SA2T0t=20) 4 g1 & IR () (o] x (8] X {[4] + €

jm(xetzn) gy an x 1) x (8] X {[4] + I o]} x [T),

jamhn 11} X [T},
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e variable n in the second integral. The effect of this change will be

which, of course, is only part of the
] can be

and changing the sign of th
emphasized by writing [T],
{T] and [#] depend on two direction cosines.

[#] and (p] as functions of n,
truth, since With the change of sign, ()]

written in terms of its Fourier transform:

16,00, 202 gg () + (71} Iz xet2n) gy an

in which

2 o
[t = 2 rom) x (e x {10 AT ok (n)]} X (T(0)],

2
o= 4T ()} X [p(—n)] X [@(=n)]

X {[4] + e 4R [px(—n)} X [TE=n)]

These two y-matrices describe the two lobes mentioned in the preliminary discussion.

presence of the matrix,
{111+ ™ e}
causes the scalloping of the upper lobe and the corresponding matrix in the expression for [¢7]

causes the scalloping of the lower lobe.

It is important to note that, because of the presence of the ground, the matrix of arriving
power densities, [@(n)], will be zero for directions n <0, below the horizon. Similarly,

[&(~n)] will be zero for n > 0.

the lower lobe is zero above the horizon.
_correlations of x- and y-fields on the xz-plane, (49), we

In other words, the upper lobe is zero below the horizon, and
These facts allow the two lobes to be separated. Thus,
from the measured matrix of cross

may obtain the upper lobe:

S‘g [ 0, 2)) e 2T 4y gz

According to (50), the desired matrix of arriving power densities may then be calculated from

o1 = B rrtx ) (it + TR e 52)
n
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If the distance between transmitting and receiving sites is very great, the signals received
on the measurement dipoles may be so weak and corrupted by noise that it may be desirable to
make the measurements instead with more directive antennas to improve the signal-to-noise
ratio. In this connection, it should be noted that the long averaging times contemplated for the
cross-correlation of antenna voltages will not be effective in removing that part of the "noise"
in the measured cross-correlation which is due to coherent noises received on the two meas-

uring antennas. Suppose that the input to the circuit of Fig. 11 from the left-hand antenna is
V1 + 1N1 + kiNO)

and the input from the right-hand antenna is
V, + (N, +k,No)

Vl and VZ are the two signal voltages, (N, + kiNo) and (NZ + KZNO) are the two noise voltages,
and k, and kz are constants. With the circuit of Fig. 11 and associated integrators we will

measure

TV, 7 (N, +k,N )} {VF + (N¥ + k¥ =V, V¥ *
{V, + (%, # kg N} (Vg + (g +kF NP} = Vy Vg + (N +kyNo) (Nf + kg Ng)
since the signals and noises will be uncorrelated. The noise components, N, Ny and N, are
assumed uncorrelated; NO is that part of the noise which is common to both antennas. Note

that the measured cross-correlation, which reduces to
VVF +k kg [N_|°
172 172 o ’

includes a term due to this common noise.

Another way of looking at the noise problem is that we contemplate using a circuit like that
of Fig. 11 to measure the density of power arriving at the receiving site, In addition to the sig-
nal power, we expect a more or less uniform distribution of noise power density, as discussed

at the end of Sec. IV. Since signal and noise are incoherent, their power densities add, and

we should expect to measure the sum of these two power with e appropri

for the measurement of power density. The advantage in using directive antennas for the meas-

urement is that they would capture less of the total noise power, but essentially all of the signal

power. To a first and fairly good approximation, a constant power density & may be subtracted

from the measured self-densities, & (f, m) and @y (L m) to account for the noise.
The measur itting an

and using sharply tuned circuits to remove all but a narrow band of noise.

carrier

may be impr n y by tr

The tuned circuits
should precede the multiplying elements in Figs. 11 and 12.

It may also be desirable to make measurements with directive antennas for another reason:
The ground at the receiving site may be 5o irregular that a calculation of the fields reflected
from it would be impractical. This difficulty may be overcome by measuring the power densi-
ties with antennas that are directive enough to reject, substantially, the radiation reflected
from the ground. As before, a measurement of cross-correlations of antenna terminal voltages

will be required; one antenna will be located at the origin of coordinates and another should be
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located in turn at a number of points on the xy-plane. Since we will assume that neither antenna
is sensitive to fields reflected from the ground, considerable freedom in the choice of orienta-
tion of the measurement plane (the xy-plane) is left to the proprietor of the receiving site. This
freedom will be restricted only by the requirement that all the incident radiation should arrive
from above the xy-plane: with positive direction cosine n.

In Sec. IV, we developed an expression, (29), for the open-circuit voltage at the terminals
of a receiving antenna due to an arriving scatter signal. The reference point on the antenna to
which the phase of its pattern is referred was assumed to be located at the origin of coordinates.
If we had assumed, instead, that the antenna is located at the point (x,y, z), i.e., the reference
point on the antenna is at (x,y,z), we would have discovered that its terminal voltage can be
expressed as

2
Veey, o= 22 5§ wum B m 2™ g (53)
i u.h

The phases of the arriving plane-wave components are shifted by the same factor as in (21),

the expression for the arriving fields. Note that, in moving this antenna from the origin to its
new location, we keep it pointed in the same direction, and we do not rotate it, so that its polar-
ization remains the same.

In the dipole measurements we used x- and y-oriented dipoles; in the present measurements
with directive antennas we will also need two kinds of antennas, which will have terminal voltages
V,(x,y,2) and V,(x,y, 7), given by (53). Antenna 1 might be a small dish with horizontally polar-
ized feed, and antenna 2 might be the same dish with a vertically polarized feed, for example.

In place of the T-matrix, we will need the square matrix,
Fpyylm)  Fy(e,m)

Fyyltm)  Fyyltm)

of horizontal and vertical plane-wave components emitted by the two antennas when they are
excited with unit current. When the antennas are located on the xy-plane, the column matrix

of their open-circuit voltages is

V,(x,y,0)

2 N
<2 0 (i x F ) D2 g

V,(x.y,0) u.h.
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and the cross-correlation matrix to be measured is
{605, 3] = Vix, y)] X V¥(0,0)

2\2 3
- (2 ) S (F(e, m)), 27V gg
u.h.
x {0 F e mT X FE, ) x (P, m)] a2
u.h.
The range of both integrals may be extended, and the matrix of antenna patterns, [F¥], may be
removed from the second integral, which is then recognized as [#(£,m)]. The result of these

changes is

160x,3)] = S‘S [9te, m)] 2TREY™) g 4

o

in which
202\ 1
e, m= (24 V& P mi, X (o m)) X [F¥e m)

= S‘S [0 e, y)) e SETEI™ gy qy (57)

The matrix of measured cross-correlations, (56), is transformed, (57), and operated on by the

matrix of antenna patterns, (54), to give the matrix of power densities:

2
[&(, m)] = n(miz) (PG, m)) X [yt m)] X Fem) L (58)

We have suggested a number of methods for measuring the power densities, all of which
involve measuring the cross-correlations of antenna voltages on some plane, transforming,
and performing algebraic operations on the transforms. It is time to take stock of the results
1o see which parts of these procedures will present real difficulties and, if possible, to suggest
short cuts. The algebraic operations, being relatively simple and straightforward, may be
dismissed immediately.

The measurement of the cross-correlations will be the most difficult operation. Making a
measurement at each point on the measurement plane, leaving the movable antenna fixed ateach
point for enough time to take an average, would be physically impossible. Even measuring at
2 sufficient number of points to determine the behavior of the cross-correlation throughout the
plane will be a ti ing operation. It will be to reduce the number of

measurement points to the bare minimum.
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licular to the ground, which will

With the of the measur on a plane perp!
be discussed separately, all the results, (40), (47) and (58), have been of the form
[®(£, m)] = (A, m)] X [o(e, m)] X (A*(, m)]

in which [#] is the matrix of arriving power densities, [¢] is the matrix of the transforms of

the cross-correlations — a matrix of rectangular power densities — and [A] is the appropriate
transformation matrix. (] is the matrix of a non-negative definite Hermitian form, as we
discovered at the beginning of this section. Because of the symmetry of its expression in
terms of [¢], it follows that [¢] is also the matrix of a non-negative definite Hermitian form.
In particular,

vlem) = Rl m)

so that the ‘,‘n's are real. The cross-correlations, which are the Fourier transforms of the

y's, must therefore obey
Sl y) = of-xy)

so that the self terms are conjugate symmetric:
6550, ¥) = ¢ A-x,-y)

By making use of these symmetries, it will be possible to obtain the four power densities from
a measurement of the four cross-correlations over only half of the xy-plane — an appreciable
saving in effort.

This saving is not possible for the measurement on a plane normal to the ground as we
have developed it, because the matrix of transforms of the cross-correlations, [¢¥(n)] + [¢(n)],
is not Hermitian, as can be seen from (50). The extra penalty attached to this measurement
may be attributed to the fact that it is also a measurement of the ground-reflection coefficients:
If (] is eliminated from the equations (50), there results

j4rhn

[p(n)] = e 1T X (7= x [t % (T

Although this feature may be desirable, one could certainly devise simpler experiments for the
measurement of the reflection coefficients.

In some cases, it may be reasonable to assume another kind of symmetry among the J's,
due to symmetry about the plane containing the great circle path from transmitter to receiving
site. If the y-axis lies in this great-circle plane, the cross-correlations will show some kind
of symmetry about the y-axis, depending on the polarizations of both the transmitting antenna
and the measuring antennas. In these cases, which will not be enumerated, it will be possible
to obtain the power densities from a measurement of the cross-correlations over a quarter of
the measurement plane except where the measurement is on a plane perpendicular to the ground.
In that case, the yz-plane should coincide with the great-circle Plane, the symmetries will be
about the z-axis, and a measurement over half of the xz-plane will suffice,

It is a fundamental property of Fourier transforms that the fine structure of a function is

determined by the gross behavior ~ the extent — of its transform and conversely. Thus, the
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required extent on the measurement plane of the cross-correlation measurements would depend
on the amount of fine structure in the power densities if the object of the experiment were to
determine the power densities as accurately as possible. But if the measured power densities

are to be used in the design of an antenna, we should like to know how much of the fine structure

is necessary for the design; perhaps some could be neglected with a resulting saving in meas-
m urement effort. As will be shown in the next sections,
this question is best answered directly in terms of the

necessary extent of the cross-correlation measurements

ot on the measuring plane: It will be necessary to know the
cross-correlation between arriving fields at any two
z’l am points on and possibly slightly beyond the aperture of
. 2 the antenna; if the antenna is to have a large aperture,
the measurements should extend over a correspondingly
large area.
On the other hand, the fine structure of the cross-
correlations, which will dictate the allowable separation

of the measurement points, is determined by the angular
extent of the power densities. If it may be assumed that
Fig. 15. Measurement effort is reduced if  all the plane-wave components of the signal arrive from
the power densities arrive from within a X
narrow range of directions, Af. within the rectangular range of directions AQ, shown in
Fig. 15, the familiar Sampling Theorem will suggest an
appropriate spacing of measurement points and perform the Fourier transform of the cross-
correlations measured at these points.

One of the rectangular power dgnsities, which will be zero outside of AQ, may be repre-
sented by a Fourier series inside AQ. In fact, the product of this rectangular density with an
arbitrary function of (£, m) may be represented by a Fourier series inside AQ:

j2nlx, (t-4,) +5,(m-m,)] -j2n{r'(4-4,)/Atts' (m-m )/Am]
¥ (e, m) e =2 2 Cugre
N

so that the rectangular power density itself is
wme S c Il /A1 )+, +s'/Am)(m-m )]
by llom) = st
r',s'
The coefficients C,,g, and the constants x, and y, are as yet undetermined. The cross-correlation
v
@ (% y) is the transform of wik(l. m):

byl = S'S‘ 9y (e m) 32TEY™) g am
a2

ej211x10+ym°) s ¢ sinm[(x—x ) A2 —r'] sinﬂ[(y—yo)Am—s
r's' T allx —x ) AL '] wlly —y,) am—s']
r',s'

=ALAm

49

UNCLASSIFIED

Sanitized Copy Approved for Release 2010/07/13 : CIA-RDP81-01043R000500080007-7



Sanitized Copy Al

UNCLASSIFIED

Note that when x = x + r/Atandy =y, + s/am, all the terms in the double sum are zero except
the one for which r' = r and s' = 5. Accordingly,
2 +r/an_+Hy, +s/am)m
¢y + T/BL, Yy + 8/Am) = Aram C R 784t/ o
ik'"o ' Yo rs

which evaluates the coefficients Crs' The cross-correlation becomes

i2al(x-x M Hy-y)mg)

dylay) =e 2 byl +x/on, y 4 s/am)

r,s

(59)

-j2n(re /as +sm /am) sinml(x —x ) At —x] sinr(ly —y) am - 5]
xe Tlx—xg) A—1]  lly - 3) Am 3]

The assumption that the power densities arrive from within the rectangular range of directions
for the ion at any point on the xy-plane in

AR has made possible this exp

terms of samples of the cross-correlation,
é (%, + T/BL, Yo+ 8/am)
taken at a rectangular array of discrete points on the xy-plane. Rows of points are separated
by 1/A4 in the x~direction and 1/Am in the y-direction. The smaller the range of directions
AQ of the arriving power densities, the greater is the allowable spacing of the measurement
points. Even if we could only state with certainty that none of the storage fields of the source
reach the receiving site, so that the power densities might arrive from any direction within
12 + m? = 1, we could still inscribe that range in a square of sides Af = Am = 2, and we could
determine the
rectangular array of points spaced by a half wavelength.
The constants x_ and y, are still quite arbitrary (they should be real numbers

on the xy-plane from measurements taken at a

relations Y

; they may
be chosen at the discretion of the experimenter to displace the measurement grid with respect
to the origin, where the reference antenna is located, so that none of the measurement points
coincides with the origin.

The rectangular power density, which is the Fourier transform of the cross-correlation,
is just the Fourier series postulated at the start, which, in terms of the coefficients we have
determined, becomes
S oyl + oty + ofam e j2al(x +r/a0Hy, +s/6m)m)

r,s

i
ArAm

for (£, m) inside AQ

vyt m) =

0 otherwise

U y, this of the Theorem only applies directly to the meas-

urement on a plane perpendicular to the ground if the range of directions A is large enough to

50

UNCLASSIFIED

ved for Release 2010/07/13 : CIA-RDPS8!

043R000500080007-

UNCLASSIFIED

include the directions of arrival of both incident and reflected plane waves. This would tend to

reduce the permissible vertical separation of measurement points on the xz-plane.

The methods of power-density measurement discussed so far have had the common advan-

tage that relatively modest antennas may be used. As one of these is shifted around on the

measurement plane, the field pattern that would appear over the aperture of a larger antenna
is explored. But the most intuitive device for measuring power density — a very directive (and
hence very large) steerable antenna — has not yet been discussed.

1t should be clear that if a single, large antenna is steered across the sky and the received
power measured at appropriate directions, only a single power density can result. With two
such antennas, used separately, it might be possible to measure the self-densities &y, and
QVV‘ but for the other two, cross-correlation measurements will again be needed. One attack
is suggested by the first part of (34), which reads

¥antem) = Bt m) EX (0,0,0)
A very directive "i-polarized" antenna pointed in the direction (£, m) would have a terminal
voltage proportional to P (¢, m), and a k-oriented dipole located at the origin would have a
terminal voltage proportional to E; (0,0,0). Cross-correlating these two, we would obtain
one of the rectangular power densities. Unfortunately, there are a number of difficulties with
One of these is that, when a practical steerable antenna of finite

an experiment of this type.
antenna close to the

aperture dimensions is used, it is
reference dipole — so close, in fact, that the structure of the steerable antenna is just in front

to mount the

of or just behind the reference dipole, interfering with its reception.
A more convenient measurement can be made with a single, large, steerable dish having

both horizontal and vertical feeds at the focal point. The feeds should be arranged so that the

mutual impedance between the horizontal terminals and the vertical terminals is zero. This
allows the horizontal terminals and vertical terminals to be regarded as the terminals of two
separate antennas, each steered in the same direction and located at the same point in space

(the origin of coordinates). These antennas may be described by the square matrix,

Fipltm 9,00 Fylt,m,,0)
[Fg(t, m,@,0)] =

Fypltm, ¢,0)  Fylt,m,¢,0)

of horizontal and vertical plane-wave components emitted when the antennas are excited with

unit current. FH:h and th are the horizontal and vertical patterns resulting from excitation

of the horizontal feed; FHV and FVV are the horizontal and vertical patterns resulting from

51

UNCLASSIFIED

Sanitized Copy Approved for Release 2010/07/13 : CIA-RDP81-01043R000500080007-7




Sanitized Copy Al

UNCLASSIFIED

excitation of the vertical feed. To a good approximation, Fy, and Fy_ are zero, but we shall

retain them for completeness. As has been indicated, the elements of the pattern matrix will
depend on the angles ¢ and © through which the antenna structure has been elevated and rotated
in azimuth,

The open-circuit voltages of the two sections of the antenna, according to (55), are

Vyle, 0)
Vylo.0)] = =
v (e, 0)

2?

3 S‘ [Fyt,m,0,0)] X F,(1,m)} d2

u.h,

This time the correlation matrix to be measured is

li5, 0)] = Vlp, 0N X V (o, )

u.h.

x [ FLmIXERw ) X (B, w0, 0)) 8’
and, as before, the pattern matrix may be removed from the second integral,which is then rec-
ognized as [&(£, m)]. The remaining expression,

2\2
goon=(B) [ gm0 x s mixFrum e e
u.h.

will have to be treated somewhat differently this time, however. It will be assumed that, ‘when

{he antenna structure is elevated by an angle ¢ and rotated by an angle ©, the patterns have sharp
maxima in the direction (£, m ) — so sharp that the power-density patterns remain essentially
constant over the range of directions for which there is an appreciable contribution to the

integral. The integral becomes

(62)

2,2
lrgte. 0= () § Fyem, .0 X 0ty mg1 X (P20t m, 0,00 60
u. h.

In this form, the ®-matrix is constant so far as the integration is concerned. Unfortunately,
it cannot be removed from the integrand because of the variable matrices that pre- and post-
multiply it. Nevertheless, the 16 cross-products that multiply the various elements of the
&-matrix may be integrated, and from these and the measured elements of the correlation
matrix (3] the four power densities may be obtained. If Fy) and Fyy may be neglected, only
four integrals, one of which is the conjugate of another, need be evaluated; each power density

is then proportional, through one of the four integrals, to the corresponding correlation.
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From (62), the density of power arriving from (4, m ) may be obtained. The measurement
and calculations should be repeated for other directions until there are enough data to determine
the power-density patterns in their entirety. Strictly speaking, the pattern integrals in (62)
should be re-evaluated each time the elevation angle ¢ is changed. However, if the patterns
are extremely peaked and if no measurements are to be made in the general direction of the
zenith, this may not be necessary.

The same kind of long-time average measurement must be made with the antenna pointed
one point in the alter-
nate technique of making cross-correlation measurements on a plane. And, in general, the
number of directions in which measurements are made should agree with the number of meas-
urement points chosen for the alternate scheme. Thus, although the use of the very directive,
steerable antenna for power-density measurement is conceptually more straightforward than
the cross-correlation measurements on a plane, more elaborate equipment is required, and
the effort involved will be about the same.
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VI. OPTIMIZATION OF AN ARRAY

The design of two specific types of receiving antenna will be considered — one in this section
and another in Sec. VIL In each case, the required information about the arriving scatter signal,
which is given by the power-density patterns, is presumed known. The two antennas will differ
because different restrictions will be placed on their construction. It is apparent that some re-
striction should be placed on the shape, and particularly on the size, of the aperture: In general,
the larger the aperture dimensions, the more power may be extracted from the arriving scatter
fields, although, as we saw in Sec.1, the point of diminishing returns is reached when the aper-
ture of the receiving antenna is as big as the transmitting-antenna aperture

The antenna to be considered in this section is an array of smaller, not necessarily identical,
antennas. The number, construction, location and orientation of the array elements is presumed
to be included in the list of restrictions on the construction of the antenna; although we will not

specify these choices, they are important and

should be given due consideration. The re-

mainder of the design, which will be considered
her: s - I
ere, will amount to the design of the inter: . oupLe
connections betweenthe terminals of the array . NETWORK

elements and the common load to which the re-
ceived power is to be supplied — a network -
problem.

As shown in Fig.16, we will start by de-

signing a linear coupling network that will ex-

tract the maximum mean power from a group
of disconnected sources and supply it toa single g 16. The coupling network for a group of discon-
load. N sources, each having an open-circuit  nected sources.

voltage Vi, an internal resistance R;, and supplying a current I, are indicated on the left of the
coupling network. The single load to which the power is to be supplied is R on the right; 1_ is
the load current. The extra voltage source V, on the right does not belong in the description of

a receiving antenna; it will be used temporarily to help demonstrate a restriction on the elements
of the coupling network. As usual, the V; and the L; are the time-varying complex amplitudes of

the corresponding voltages and currents. In practice, the coupling network might consist of a

collection of transmission lines that pass all the frequency of a typical
tion signal without appreciable relative attenuation or phase shift: We will assume that the input-
output relations of the coupling network, calculated for steady-state sinusoidal inputs, will hold
when the inputs arc fading, modulated carriers.

The circuit of Fig. 16 is a fairly accurate representation of the interconnections between the
elements of an array and their common load. V, may be regarded as the open-circuit voltage of
the i'™ element and R its radiation resistance, so that the i'" source on the left s the Thévenin
equivalent of the i element as seen from its terminals. (It is assumed that the driving-point
reactance of each element has been resonated.) But if two antennas are located close together

as they might be in an array, and if one is driven with a generator, a fraction of the generator
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ling network
re connccted

: be delivered
that the imped-

sources dead) will

describe the coupling network
fact that the power from gen-
less than or equal to the

being zero:

ne only live source,

The first term of the the remaining terms are

which may be written

~
Vol = X
i=t

by reciprocity. The quantity

5¢€
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t= 2 RGR Y, (65)
is the transmission coefficient from the i source on the left in Fig. 16 to the load (or from the

right-hand source to the i source resistance on the left). We have just demonstrated that

(66)

which is equivalent to the statement that the sum of the squared magnitudes of the elements in

the first row of the scattering matrix'® is less than or equal to one when (in the present case)

the load reflection coefficient — the diagonal element — is zero.

Evidently the inequality (66) becomes an equality if the coupling network is lossless. It will
also be an equality if the coupling network contains resistors that are not coupled to the load,
but that may, however, be coupled to one or more of the left-hand sources.

We will have no further use for the right-hand voltage source, which may be considered to
be removed (V, = 0). The mean power in the load from the left-hand sources is

W, =1/2 |1, |" R

o

i=1
N
Z
i=1

=1/2 R, Av

=1/8 Av.

(z

from (63). Or, using the transmission coefficients, (65),

N

z

i=t

v. |2

Wa: 1/8 Av.

N

It has become clear that, for maximum power, the restriction (66) should be satisfied wi
the equal sign, for if it read

so that

the mean load power, which could be written

W, =1/8 a% Av.
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would only be the fraction a’ of that possible if (66) were satisfied with the equal sign. Thus,
we should adjust the transmission coefficients in such a way as to maximize (67) subject to the
constraint,
DETA T (¢8)
i=1
We have shown that the constraint (68) is a necessary condition on the realizability of the
optimum coupling network, but as yet we have not shown that it is sufficient. To show that the
constraint is sufficient, it will be simplest to produce a realization of the coupling network,

which, of course, is one of the desired results. Such a realization is shown in Fig.17. The

5 TEE

ol

Fig. 17. A realization of the optimum coupling network.

boxes labeledOi.i‘;GN are phase shifters that are coupled by ideal transformers to the load Ry.
Physically, the i phase shifter might be a transmission line of characteristic impedance

" N .th
R; and electrical length ©; radians. The i"" ideal transformer, which has a turns ratio of a to
1, might also be approximated by appropriate connections to a resonant length of transmission
line. The parallel rather thanthe series ion of tr

: former ries has been chosen
to simplify the construction of the coupling network: A single autotransformer (a single resonant
line) with various primary taps will serve the purposes of all N ideal transformers shown in
Fig.17.

With the load short-circuited, the current flowing in the short is

and if the load is matched, the mean load power is
N

=1/8 1R =1/8 R, Av.
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which may be written

i=1

which may be written
N

-2 e 70

> R ¢ . (70)

i=1

Comparing (69) with (67) and (70) with (68), we recognize that the transmission coefficients for
the network of Fig.17 may be taken to be

(71)

If the turns ratios and phase shifts are appropriately chosen, the network of Fig.417 will indeed
be a realization of the optimum coupling network
It remains to maximize the mean load power by adjusting the transformers and phase shift-

ers. We will work with the transmission coefficients, from which the turns ratios and phase
shifts may be determined by (71). Manipulating (67), the mean load power becomes

N N

.
W,=1/8 3 % 4t

i=1 k=1

And we are not surprised to discover that the data required for the maximization consists of the

set
G =

of quantities proportional to the temporal cross-correlations of open-circuit source voltages.
We presume that these quantities, which may be determined from the power densities by the
methods of Sec. V (or which may be measured directly!), are known. In any case, we note from
(73) that ¢ ;) = ¢k*j, so that the auto-correlations are real and non-negative.

We will use the method of Lagrange to maximize (72) subject to the constraint (68): We will

maximize

K N
- to
U= DI ] -

i=1 k=1
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where @ is the Lagrangian multiplier. Thereare 2 N relations; N state that U is stationary with

the N real parts of the t's, and N state that U is stationary with the imaginary parts. Tempo-
rarily, we lett; = 7, + jo,, where the 7, and o, are real. Then
N N
(r+30) 3 (r—jo) by —a 3 (tZ4ed)
it 9% k1% Py i toi)
k=1 i=1
and the first N relations are
N N
W oS (1 —jo) e, + > (r +jo) ¢, —2a7 =0
ar, kT I%) Pnk i 739 Pin n”
i=1
for
The second N relations read
N N
2U _ : : .
2 ag, 71 Z nmio) oy =i T tn+)
k=1 i=1
forn=1,2,...,N

The sum

N
Ve vi B S rio - tr tieg o

N
utilizes all 2 N relations in N complex relations:
N
St mat =0,
ist

n=1,2,...,N . (74)

At this point, it will be convenient to convert to matrix notation. Let the column matrix of

transmission coefficients and the column matrix of normalized open-circuit source voltages be

vy
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so that the square matrix of normalized cross-correlations is

Evidently, the constraint may be written
LXt¥ =1

the mean load power is
W, =t X[B)Xt4]

and the result of the maximization reads
Lx@l=at

Post-multiplying both sides of (74a) by t*], we have
EX[P]Xt¥] = t Xt¥

so that the Lagrange multiplier @ is the maximum mean load power we seek.
ipli t-matrix is the well-

The solution of (74a) for the and corr
Kknown characteristic value problem.? Only enough will be said about it to indicate the nature
of its solution and to show the physical significance of certain special cases.

The result, (74a), may be written
x{[p)-at)}=0 ,
in which [1] is the unit matrix of order N. This equation has non-trivial solutions only if the

determinant
Hig1-e 11} =0
that is,
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which is the characteristic equation of the matrix (¢]. Evidently, this equation has N a-roots
or characteristic values. In spite of the fact that the off-diagonal elements 9,k are. in general,
complex, (72a) is a non-negative definite Hermitian form, so the characteristic values must be
real and non-negative, and the coefficients of the characteristic equation must be real, and, i
none of them is zero, tliey must alternate in sign. We are interested in obtaining the maximun
power; the greatest characteristic value @ is that maximum power
If the array elements have been properly placed, o will be a distinct (not multiple) root

of the characteristic equation. In that case, the rank of the system determinant

[81= ay, [1]]

will be equal to (N~ 1), and at least one of the cofactors Clk of its elements will be different
from zero. (74a) will then be satisfied by the characteristic vector (the set of transmission co-
efficients)

and the column k may be chosen so that at least one of the Cyy is different from zero. In other
words, the elements of t] are proportional to the elements of one column of the matrix of cofac-
tors. The constraint, (68), will also be satisfied if the constant of proportionality is chosen so
that

ik o
e
N
2
2 leyl
i=1

which determines the transmission coefficients to within an arbitrary phase shift © common to
all of them.

On the other hand, if a__ is a multiple root of the characteristic equation, the rank of the
system determinant will be less than (N — 1), and a1l its cofactors will be zero, so that (78) will
be indeterminate. In this case, (74a) is satisfied With @ = @ by at least two independent sets
tal and ty] or by any linear combination of these: "

t1=ata]+btb]

As aresult, any one of the transmission coefficients may be made zero by properly choosing the
o )
fc nsta;\ts 2 andb. Of course, making t; = 0 amounts to disconnecting the i™ source entirely
rom the load.  For this to be possible without reducing the maximum available load power, the
array elements would have to be Particularly poorly placed.
As an example of the foregoing considerations, suppose that a coupling network is desired

for a three-, i i
ee-element array having the matrix of normalized cross-correlations
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Note from the diagonal elements that, by itself, source 1 would supply 4 watts to a matched load;
similarly, sources 2 and 3 would supply 5 watts and 4 watts, respectively. The characteristic

equation is

36 — 480 + 13a% —

= —(a-1)(a-6)%=0

so that the maximum of 6 watts may be drawn from the three sources in a number of ways. The

system determinant for a 6-watt connection is

and, in addition, it may be seen by inspection that all 9 cofactors are zero. We will obtain the

6 watts in such a way that the third source is entirely disconnected from the load (t = 0). De-
leting the third row and column, the system determinant becomes

and the matrix of its cofactors is
1+

-2
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The reduced t-matrix will be taken from the first column of this matrix of cofactors, so that

the entire t-matrix is

so that 6 watts are still available after the elimination of the third source. In normalizing the
characteristic vector (78), the phase shift © = 37/4 will lead to the simplest network. The

t-matrix is then

and the corresponding network, for assumed equal source and load resistances, is shown in
Fig. 18.

45° PHASE SHIFT

(/8 wavelength line)

Fig. 18. In this example, one source may be entirely disconnected
from the load.
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As the number of sources (the order of the associated correlation matrix) increases, the
labor involved in the method of solution just demonstrated soon becomes prohibitive. Fortunately,
an iterative procedure, which is particularly well-suited to the problem of finding the greatest
characteristic value and corresponding vector, is available.!> na

may be programmed to follow this procedure.

Automatic computing machines

The case of perfect correlation between source voltages and the case of complete incoher-
ence of these voltages are two extremes worth mentioning. As discussed in Sec.II, if Vi and Vk
are "perfectly correlated) they will "fade together" with fluctuations in the scattering region.

We may write the column matrix of normalized open-circuit source voltages (75) as

with g% =1

where the v; are not time functions. The matrix of normalized cross-correlations (76) becomes

(01 g |* vixyr = vixy
In this case, the characteristic value problem is particularly simple. (74a) reads
tx[p]=tXVIXVE=at
but this time, the product t X v] is a scalar constant, so that the result of the maximization is
t @ v* As before, we may choose the phase of the proportionality constant at our convenience,
and its magnitude should be chosen to satisfy the constraint, (68a). Thus, if

LXV W, (19)

then t may be chosen as

The maximum available power, (72a), is

W,

t X v] X v* Xt
a= L v

xv]xv¥xv]=W

c

1
1«
We

The maximum available power, (79), is seen to be the sum of the powers available from each

source separately. As may be seen by expanding the characteristic equation, (77), the coefficient
of (ca)N"1) which is also the sum of the characteristic values, is just the sum of the diagonal
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elements: the sum of the powers available from each source separately. Since one character-
istic value is equal to the latter sum, and since the characteristic values are non-negative, all
the other characteristic values must be zero. The case of perfect correlation just considered
might arise if a small array were illuminated by a point source or by a relatively concentrated
source having a power-density pattern that is sharply peaked in one direction. It might also
arise if the object of the design were to produce a coupling network that is optimum only for a
period of time short compared with the fading period of the arriving signal. The latter possibil-
ity, which leads to a time-varying coupling network, will be considered in Sec. VIII.

The other extreme case is that of complete incoherence of the source voltages. In this case,
the cross-correlations ¢ ;) between the source voltages are zero, and the correlation matrix re-

duces to the diagonal form:

The characteristic values of this matrix are just its diagonal elements. If the greatest of these
is ¢,;, the maximum power of ¢, watts may evidently be obtained by matching the it source
directly to the load and disconnecting the other sources entirely. Almost complete incoherence

would be expected for an array of widely sep: that is illumi by a diffuse
source having a broad power-density pattern.

For example, if the array is receiving only noise, and if that noise arrives uniformly from
all directions in space, we would expect the array element voltages to be completely incoherent.
We discovered in Sec. IV that the available noise power is independent of the antenna pattern;
the noise power must be independent of the connections in the coupling network for the array.

Since the characteristic values of the correlation matrix represent powers available with various

, all the values must be equal. As may be seen by imagining that the
sources are coupled to the load two at a time, this implies that the off-diagonal elements ¢, of
the correlation matrix are zero, and that the diagonal elements are equal.

On the other hand, suppose that two of the elements of the array are short dipoles. In the
last section, it was shown that the cross-correlation of their open-circuit voltages is propor-
tional to the Fourier transform of a rectangular power density. Since noise power arrives only
from the real directions, 12 + m?< 1, this rectangular power density cannot be a constant: It

2 2

must be zero outside of £” + m” = 1 and different from zero inside. Its transform, the cross-

correlation, therefore, cannot be an impulse in space that is zero unless the locations of the two
dipoles coincide. In other words, the open-circuit noise voltages of the two dipoles will generally
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be partially correlated! This apparent paradox has resulted from our neglecting the mutual
impedances between the array elements. When these are properly accounted for, the noise
power is truly independent of the connections in the coupling network between the array elements
and the load.

Instead of representing the array, as seen at the terminals of its elements, by the set of N
disconnected sources shown at the left in Fig. 16, we are led to the more general representation

of Fig.19. The self and mutual impedances between array elements are the elements of the

vy
5

GENERAL
NETWORK

GENERAL RESISTIVE
NETWORK | —= WORK NETWORK

(2] = 1=
[R] +i[x] [R) + j{x]

I

Fig. 19. A set of connected Fig. 20. The resonating network is connected in series with the con-
sources. nected sources.

matrix [Z] of open-circuit driving-point and transfer at the terminals of
the array elements before these have been coupled to the load. The open-circuit voltages of the

array elements are the elements of the column matrix

Vi

The open-circuit impedances and voltages have been chosen for convenience; in some cases, the
open-circuit voltage of a dipole-array element can be calculated under the assumption that the

other dipole elements, which are open-circuited, are removed entirely.
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Again we are to design a coupling network that will extract maximum power from the array
of coupled sources and deliver it to a single load. We will attack this problem by reducing it to
the one we have just solved: the design of an optimum coupling network for a set of disconnected
sources. The first step is to resonate the self and mutual reactances. If the resonating network
is connected in "series" with the array elements as shown in Fig. 20, and if the self and mutual
reactances of the resonating network are of opposite sign from the corresponding array react-
ances, the self and mutual impedances measured at the new terminal pairs are the self and mu-
tual resistances of the array. We are left with the resistive network on the right in Fig. 20.

It should be emphasized that we are dealing strictly with terminal pair behavior: There
would be no connection, for example, between terminal 1 and terminal i in the resonating net-
work; current can flow only to terminal i' from terminal i. It may be imagined that terminals
i—i' are the ends of the primary winding of an ideal transformer, and that all other connections
in the resonating network are made to the secondary winding. In any case, it should be clear
that the open-circuit voltages of the resistive network we have obtained are the same as the
corresponding open-circuit voltages of the array.

Note that if we started with the resistive network on the right in Fig. 20 and added a "series"
reactive network described by the matrix +j[X], we would reproduce the representation of the
array (Fig.19). Thus, if we can find a coupling network that extracts maximum power from the
resistive network and delivers it to a single load, the resonating network and that coupling net-
work are an arrangement for extracting maximum power from the array, for, if more power
were available from the array alone, the coupling network could include the "series" reactive
network +j[X] to obtain that greater power.

The logic of the preceding argument kinges on the fact that the process of adding the reso-
nating network is reversible. We shall have to use the same type of argument again, because

we have not discovered how to extract maximum power from the resistive network.

RESSTIVE
NETWORK

Fig. 21. The ideal transformers can create N disconnected sources
from the N connected sources.
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The next step is to diagonalize the resistance matrix of the resistive network. For this
purpose, we consider the ideal transformer connection shown in Fig.21. From the N terminal
pairs of the resistive network we connect N? transformers with primaries in parallel and sec-
ondaries in series in such a way that N new terminal pairs are created. (Only the n'f and k'
output terminal pairs are shown in Fig.21.) The transformer connecting the i resistive-
network terminal pair to the n'™ output circuit has a turns ratio 4:b_; all N° transformers are
described by the matrix of turns ratios

bz o - Py

The transformers have been connected in such a way that, when the output terminal pairs
are open-circuited, no current flows in the resistive network, and the open-circuit voltage at
the n output terminal pair, which is equal to the open-circuit voltage of the n' pair in the
equivalent circuit on the right in Fig. 21, is

N
Vs Z oy Y
i=1
In matrix notation, from (82), the column matrix, (81), of resistive-network open-circuit volt-
ages, and the corresponding column matrix of open-circuit voltages of the equivalent right-hand
circuit,
Vi = [b]X V] . (83)
The self and mutual output resistances may be calculated with the sources dead (V] = 0).
In that case, the currents Ji are related to the currents ]n by

N
3] = bl x1)

The voltages K] are
K] = [R] X J] = [R] X [b], XT]
and the voltages E] are

E] = [b] X K] = [b] X [R] X [b], XI]
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We will call the matrix of output resistances [D] in anticipation of its being diagonal:
E]= (D)X ; [D]=[b)X(R]X[b], - (84)

Evidently, a set of transformer connections described by any real matrix [b] can be realized;
b, = 0, the corresponding transformer should be removed, leaving its primary eircuil open
and its secondary short. Because of reciprocity, the resistance matrix [R] is symmetric, and
it may indeed be diagonalized by the operation (84) with considerable freedom in the choice of
the elements of [b].

Guillemin'? discusses a method for obtaining the diagonalizing matrix, [b], as the product

of M = N(N — 1)/2 elementary matrices:
[b] = [byy) X [byg_g] X - X [0] X [by]

The elementary matrix [b,] is chosen so that [b,] X [R] = [R'] has a zero in the second row, first

column:

Rag
in whi vo= =3
mwh)t:l"ARZi Rz; Ryy R“.

row, first column:

Next, [b,] is chosen sothat [b,] X [R'] = [R"] has azero inthe third

. . . R3y .
in which RY; = Ry, — g;7 Ryj- Next, [by] is chosen so that [b3] X [R"] = [R"] has a zero in the

third row, second column:
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R} )
in which RY} = RY; . The process continues into the fourth and lower rows until the
22, . |
remaining matrix, (b] X[R], is triangular. The diagonal elements of this matrix (Ryy, Rpp.
RU....) are the elements of the diagonal matrix [D], the source resistances on the right in

When this diagonalization procedure is p) d, the determi of each matrix,

and hence the determinant of [b], is unity. [b] has the triangular form

— 1)/2 transformers and exactly N direct connections will complete the

s0 that no more than N(N
This saving of somewhat over half of the pos-

set of transformer connections described by [b].

sible NZ transformers is a decided advantage to the method of diagonalization under discussion.

kY
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Since it represents a physically realizable network, the matrix [D] of the resistive network
as seen at the output terminals of the transformers must be non-negative definite. In addition,
since it would be unreasonable to expect infinite power to be available from the array, each
source resistance D, must be greater than zero, or if D; = 0, then Vj = 0. The case D, = 0 and
V1 = 0 would not be expected in a practical situation; it could arise, for example, if some of the
array elements were interconnected through a lossless network in such a way as to create an
extra pair of terminals. We may expect, then,that [D] and [R] are positive definite, and that the
diagonal elements D; are all greater than zero. It will be noted that the condition D; # 0 for
i=1,2,...k is necessary and sufficient to allow the diagonalization procedure to be carried
through the (k + 1)5' row.

Since the determinant |(b]] = 1, [b] must exist. (It has the same triangular form as [b].)
(83) and (84) may then be rearranged to read

V)= [b]" X V'] (83a)

(R] = (b)™* X [D] x [b][1 . (84a)

These equations show that if the disconnected sources on the right in Fig. 21 are followed by the

set of ideal transformer connections ibed by [b]!, the terminal-pair behavior of the re-

sistive network and its open-circuit voltages are reproduced. In other words, the process

brought about by the set of tran: connections is reversible. Thus, the set of transformer
connections, followed by a coupling network that extracts maximum power from the disconnected
sources and delivers it to a single load, is an optimum arrangement for extracting power from
the resistive network, for if more power were available from the resistive network, the coup-
ling network could include the set of transformer connections described by [b]™* to obtain that
greater power.

We have shown that if the array is followed by a resonating network (Fig. 20), then by a set
of transformer connections (Fig. 21) and, finally, by a coupling network (Fig. 17), the combined
circuit will deliver the maximum power from the array to a single load. If the signal data con-
sist of the elements of the matrix of

ions of array-el it voltages, V] X V¥
the matrix of cross-correlations of the open-circuit voltages of the disconnected sources, shown
on the right in Fig. 21, is

VXY™ = [b] X V] XV* x [b],

from (83). And the matrix of normalized cross-correlations to be used in the characteristic
value problem associated with the disconnected sources is

[¢1=1/8[ i xmxmxmtx[’

where the diagonal matrix
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The ¢ -matrix has again been normalized in such a way that its characteristic values are extreme
available powers. As usual, the form of the final coupling network is dictated by the solution
vector corresponding to the greatest characteristic value

It is somewhat disheartening to contemplate the hardware required by the foregoing method
of extracting maximum power from a large array. Consider a 100-element array consisting of
10 rows and 10 columns of antennas. The number N is 10,000; about 5000 transformers and a
similar number of elements in the resonating network would be required. Any such design
would clearly be uneconomical. Of course, the mutual impedance between widely separated
array elements would be small, so that many of the mutual impedances could probably be neg-
lected altogether. This would effect a considerable saving in both the number of transformers
and the number of elements in the resonating network.
erately directive clements that were arranged as far as pos-
Nevertheless, a number of circuit elements greatly

The mutual impedances would be par-

ticularly small for an array of mod
sible not to have overlapping storage fields
in excess of the number of array elements would probably be required in any case.

oregoing development has been that we were able to prove that it led
Fortunately, the circuits we developed are not the only ones

The advantage of the f
to the maximum available power.
that can collect maximum power {rom an array;
circuit that, when connected to the array and the load, produces th
serve just as well. The load current, from (63), is

there are many simpler ones. In fact, any
e same load current, will

N
% Yo Vi
K=t

The admittances and voltages pertain to the disconnected sources and their coupling network.

In terms of the transmission coefficients, (65),
N
1 1w
1= ot —Vi
° D
2[Ry ket
or in matrix notation,
1= —A-tx

TR
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Finally, using (83),
1
x || x [b] X V]
ND
The load current has been expressed in terms of t (the normalized solution vector of the char-
acteristic value problem), the source resistances of the separate sources, the matrix of turns
ratios that diagonalizes the resistance matrix of the array, and the open-circuit array clement

voltages. Any circuit that delivers a load current that is the same weighted sum of open-circuit

array element voltages will deliver the same maximum power as the circuits we have developed.

This new circuit must provide the same weighting coefficients (transfer admittances) as appear
in (87).

The calculation of the transfer admittances for the new circuit can also be simplified; it is
not necessary to go through the intermediate step of calculating the matrix [b] that diagonalizes

the resistance matrix, as we shall now see. The characteristic value problem for the array

consists of determining the set of t t that satisfies t X [¢] = at with

the greatest characteristic value o, . With [¢] given by (85), the equation reads

{Lx[ﬁlxm}x(% VIXV = a

If the right-hand side is post-multiplied by
-1 -1
(1) = [R]”" X [R] = [b], X [D}"" X [b] X[R] ,

from (84a), we have

X [blp X {4 VIXVH = « tx | |xmibx(R]
} 3 5 [b]¢ X [R]
which may be written

lx(% V] x v*}

in which

}-1
ND.

The constraint on the issi i t Xt¥] =1, b

-1
y X[b] © X
= [»JE
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and, with the aid of (84a), it may be written
Y X[R] Xy# =1
The lead current, (87), written in terms of the transfer admittances, is simply

—1oyxy ©0)
2R, =

In designing an optimum coupling network for an array of coupled sources, therefore, the
characteristic value problem, (68), should be solved for the characteristic vector y], corre-
sponding to the maximum characteristic value a, which is the maximum available power. The
charactexristic vector should be normalized in such a way that the constraint, (89), is satisfied;
as before, this operation will fix the magnitudes of the y's, but leave a common phase shift un-
determined. Finally, a coupling network must be found that will deliver the load current, (90),

for any set V] of open-circuit array element voltages; the transfer admittances are the set

The characteristic value problem, (88), is more general than the one we were originally

led to. Nevertheless, if (88) is post-multiplied by [R]™':
1 % -1
y)({g VI X V¥ X[R] } = ey

it becomes formally identical with (74a) and may be solved by the same methods. The matrix
(% FTX V7 x [RI™'}, however, is generally not Hermitian, and it may be more convenient to
solve (88) directly for its maximum characteristic value and corresponding vector. The fact
that V] X V* is non-negative definite Hermitian and [R] is positive definite symmetric is sufficient
1o insure that the characteristic values are real, finite, and non-negative. This more general
characteristic value problem is also well known and may be solved by iteration. 3

One of the simplest forms the coupling network may take is shown in Fig. 22. The box

labeled 6. is a transmission line of electrical length ©; radians and having any convenient
i
M

o :

FESoNATNG %
Fo

Fig. 22. A simple realization of the optimum coupling network for &
set of connected sources.
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.th
characteristic impedance; it may be simply an extension of the feeder from the i array element

2, 2 o
4 1+t m 1 e
The ideal transformers may be realized approximately by appropriate connections to a single . Vﬂu“-m) = n SS‘ 7 Fyaltsm) Fv’nu + A, m+p)drde

length of resonant transmission line. And if this resonant line is cut long (or short, as required),
it will also perform the function of the resonating element. The design of this circuit is straight- The integral, as may be seen by comparing it with (31), is just #y,\(t, m), the density of arriving
forward when the characteristic value problem has been solved, making the coefficients in (90) vertically polarized noise power. As we discovered in Sec.IV, this quantity is a constant for the
avatlable real directions in the case of uniform noise illumination; we shall again call it & :

Before closing this section, we will choose a simple array and show that the power available
from it, when it is subjected to noise that arrives unifermly from all directions, is independent
of the connections in the coupling network that connects the array to its load. For this to be the
T of the disconnected sources

k The cross-correlation of z-fields is
on the right in Fig. 21 must be zero, and the same noise power must be available from each source

case, the cross-correlations between the open-circuit voltages V‘i v

In other words,

_(c j2m(xt+ym)
Sazz oY) = SS g tm) € Yt dm

(o1« [1]

Alternatively, as may be seen from (88), it must be that
2
11 _ +m jan(xttym)
VIxV*e« [R] =8, 5‘5‘ —_—e dt dm
u.h
which we will demonstrate. 9
As an array, we will choose a pair of short vertical half-dipoles just above a perfectly con- The integral is again best evaluated in spherical coordinates with the aid of Watson.” With

ducting horizontal plane and driven between their lower ends and the plane. The dipoles will be £=pcos®, m=psin®, it becomes

1 —1°—m'

illuminated with noise which arrives uniformly from all directions in the upper hemisphere. If . -

the dipoles have effective heights of a, and a, meters, and if they are separated by r wavelengths, Bagae3) = By 5 pdp ( a0 oJ2plx cos @ +y sin0)
a J

the matrix of their open-circuit driving-point and transfer resistances is ° °

faf flo)  aa, f(r)

2 N N
2,3, flr) 2, flo) The quantity /2 + y is the separation ¢ of the two dipoles. With p = sing. the integral becomes

/2 3
¢ g (1) = 278, So J, (2nr sing) sin” ¢4

_ sin2rr  cos 2rr _ sin 27r
fr) = =+ 9 __"3
(27r) (27r) o2 - ZM .
= 277 si n¢ —J_(2nr sing) sing cos
f(o) = lim f(r) = 2/3 = 2nd, So [, (2 sin¢) sin¢ °
r-0

s 5 /z‘l"’]
(

S

The open-circuit voltage of one of the dipoles is proportional to the z-component of the elec- o [z"/ ’ru/2
=% 1/2

tric field at the dipole. The cross-correlation of open-circuit voltages is therefore proportional
to the cross-correlation of z-fields, which, as is suggested by (34), may be calculated as the
Fourier transform of the rectangular power density ¥, From (33) and (10),

(27r)

. = 2ng f(r)
azz
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Allowing for reflections from the conducting plane, the matrix of cross-correlations of open-

circuit voltages of the dipoles is

2
a,” 1(0) a,a, f(r)
V] x V* = 879
L o
| a2
a,a, f(r) a, f(0)
which is indeed proportional to their resistance matrix, as expected. We have shown that the

noise power available from this particular array is independent of the connections in the (loss-

less) coupling network connecting it to the load.

ly, the foregoing arg suggests an unusual way of calculating the real part of

the mutual impedance between two antennas.
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VII. OPTIMIZATION OF A CONTINUOUS ANTENNA

In this section, we will discover how to adjust a receiving antenna of the type described in
Sec. 1II in such a way that maximum signal power is available at its terminals. Instead of ad-
justing a discrete set of transmission coefficients, as was done in Sec. VI, we will allow the
adjustment of the electric field produced at each point on the aperture plane of the antenna when
a unit current is applied to its terminals. In contrast to the array considered in Sec. VI, the
antenna considered here is described by a continuous field distribution; it may be called a con-
tinuous antenna.

There is a pitfall in the path of the present investigation that we will dispense with at the

start. Even if the region of space containing the active conductors of the antenna were speci-

fied — in fact, even if this region had di small compared with a -

it would be generally possible to fit into this region an antenna having an arbitrarily sharp pat-

tern! An antenna having a radian idth small compared with the reciprocal of its largest

aperture dimension, expr in wavelengths, (or hav-
ing a small beamwidth if the largest aperture dimension
is small) is known as a superdirective antenna.'® Such
an antenna is undesirable because its adjustment is crit-
ical and its losses are relatively high. We will neglect
antenna losses, and we will assume that the optimum
configuration we arrive at analytically can be duplicated
exactly in practice. Since, as we discovered in Sec. IV,

the greatest signal power is available from the antenna

having the greatest gain in the direction of maximum

Fia. 23. The antenna is a rectongularhole PO density, we might expect our maximization of
ig. e antenna is a re

in an infinite, perfectly conductingplane. available signal power to lead to a superdirective antenna

having infinite gain. This undesirable result will be pre-
vented by appropriately restricting the construction of the antenna.

The antenna to be considered in this section consists of a rectangular hole in an infinite,
perfectly conducting plane, which will be taken as the xy-plane. The origin of coordinates will
be centered at the mouth of the hole, as shown in Fig.23. The aperture dimensions, whichare
hs in the x-direction and y, in the

the length and width of the hole, are X,
y-direction. In some manner, which we will not investigate, electric fields wjll be produced
on the xy-plane at the mouth of the hole when a generator is connected to the antenna terminals.

It will be assumed that all the power from this generator is radiated into the upper hemisphere.

The gain of the antenna, the ratio of (15) to (16), is

2|18 gt m e [P el 2 + [P0t 0]

I i i B
2

00 nlipy e ml? + 12y ml? + 20 ] a am

u.h.

The conducting plane imposes the boundary condition that the tangential electric fields E_(x,y,0)

and E_(x,y,0) are zero except for (x,y) inside the aperture. The rectangular plane-wave
Y
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components P_(1, m) and P, (£, m), which are the Fourier transforms of the tangential fields, must
2 '
therefore be well-behaved functions of direction. Although we would expect Px(l, m) to have a
peak in the direction of maximum power density, the sharpness of that peak is limited by the
aperture size. (It is easily shown, for example, that
P (t, m)|?

S‘E IR, , m)| % dt dm

is less than or equal to the aperture area ex} in square lengths.) The third rectan-

gular plane-wave component, P,(1,m), is linked to the other two by the divergence relation,

tP +mP +nP =0 . . (10a)
x y z

Except possibly in the directions, n = 0, corresponding to the horizon, P, (£, m) will also be a

11-behaved function of ; its peak will again be limited in sharpness by the aperture
dimensions. In other words, regardless of how the antenna is adjusted, its gain in any direction,
except possibly toward the horizon, will remain finite.

Because of the divergence relation (10a), only two of the three field components may be
adjusted independently. It will be convenient to work with E_(x,y,0) and E,(x,y,0) or their
transforms, P,(1,m) and P (4, m). The rectangular shape of the aperture Kas been chosen to
simplify the calculations. “Since either tangential field, E(x, y,0), is zero outside the rectan-

gular aperture, its , Bt m), ng to the Theorem, is completely
determined by a set of samples taken on a grid of points in the fm-plane. Rows of sampling
points are spaced by 1/x° in the ¢-direction and by 1/yn in the m-direction:

sin[x (£ — 4 )~ r] sinaly (m - m )~ s)

Pt,m) = 3 Bt +r/x,, m +s/y)

wx (£—2)=7r] 7y, (m—m )—s
XE ACEENES

and the Fourier series rep; ting the field is
-j2mlx(tg e /x )+ylm +s/y))]

1
E > Pty + r/xo. m+ s/yo) e

r,s
Eilx,y,0) = for -1/2x <x<1/2x, and -1/2 Yo <y <t/2y,

0 otherwise

These relations may be derived in the same way as (59) and (60) were derived; in fact, they
may be inferred from (59) and (60). The constants 4, and m, play the same role as the con-
stants x; and y, did in (59) and (60); they may be chosen arbitrarily to displace the sampling
grid with respect to the origin in the fm-plane (the zenith). It will often be convenient to pick
the direction (£, m ) to coincide with the direction of maximum power density.

In maximizing the available signal power, we will adjust the coefficients, B (4, +r/x_,
m,, + s/y,) and Py“o + r/xo, m +8/y). Strictly speaking, there is a doubly infinite set of
each but, as a practical matter, only a finite number of points (1, + r/xo. m+ E/yo) on the
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N N 2 2
sampling grid fall within £° + m® = 1: Only a finite number of points correspond to real direc-

tions. Changing the coefficients corresponding to samples taken very far outside of the unit
circle will not have much effect on the antenna pattern in real directions, as can be seen from
(91). Practically then, we may be content o adjust a finite number of coefficients.

We will start with the expression (30) for the available power, which we will write in

matrix notation as

{ angExex

in which [@) = [#(£, m)] is the matrix of power densities (32), and

FH(l,m)

F] = Flam)] =
Fy(t,m)

The next step is to write the available power in terms of the x- and y-plane-wave components:

Px(l. m)

P] = Pl,m) =
B (1, m)

As suggested by (39), this may be accomplished with the aid of the transformation matrix [T},

given by (38). The result is

Jhe
If the square matrix in the numerator is called
o =t x et
and the corresponding denominator matrix is calledt

11t may be seen from (40) that the numerator matrix is 1ot the mtrixof rectangular power densities used in Sec.V,

but may be expressed in terms of that matrix as

N1 =L (01 % [g,) % 10]
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all quantities being functions of (4,m). If the matrices involved are extended, the integrand may
-1 -1 be written in terms of the pattern samples, (91b), as
= Tt x () ‘
p X AN} X p*}
=

in which p} is the column matrix of pattern samples,

P
the available power may be written x1

S' dQ{P x [N] x P*]} Py
A% uh.

E ( de{P x [D] x P*]}

u. h.

In order to express the available power in
terms of the samples of the antenna pattern, it

will be convenient to renumber the points on the

sampling grid consecutively, using a scheme such
as is shown in Fig. 24. In that figure, the point

,» corresponding to (r,s) = (0,0), has

been given the new number 1; the new number 2 has

£=4, m=m

been given to the point £ = £ + 1/xo. m =m_, which

was originally numbered (r,s) = (1,0). The new

s numbering spirals outward until all points on the

; grid have been assigned a number. If the new
[ number k corresponds to the original numbering

(r, s), the sum (91) may be rewritten

Fig. 24. Renumbering the sampling grid. Bm= S Bt
k=1

in which
Py = Bty +x/x,, m_ +s/y)
and

sina(x (¢ - 4 )= r] sin[y (m—m )= s]

w[xo(l— l°)> r] ﬂ‘[yo(m - mo)— s]

The integrand in the numerator of (96) presently reads

the matrixbrackets indicate the partitioning shown in (97) and (98). It the
the available power may be written

The extra marks on
denominator integrand is extended in the same way,
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o 1
§ angp x4k xpr}
2% A
A% wh
o 5 a@{p x 4D} X p*}}
2 x AL
u h.
In this form, only the square matrices N} and {D} are functions of direction. In terms of
S {DFaa 99)
u.h.

_{(:;},= S‘ .p:r}(m and
wh.

the available power may finally be written as
.
2 X {G} X p*
'Az“‘ 2 AGH Pt (100)
M b x {H} X p*
B AHE F

It will be recalled from Sec. IV that the denominator of the expression for the available

a

power is proportional to the radiation resistance of the antenna, and the numerator is propor-

tional to the mean-square open-circuit voltage. The same is true of (100). This means that

any matrix {H} of finite order is positive definite Hermitian, so that its inverse exists, and
the matrix {G} of like order is at least non-negative definite Hermitian, [The denominator
matrix {H} is actually symmetric, as may be seen from (95).] The expression (100) may be

by holding the

constant and maximizing the numerator. (This amounts

to maximizing the mean-square open-circuit voltage while holding the radiation resistance

constant.) If a procedure similar to the one leading to (74) is used, the condition for maximum

available power is found to be
px{GF =ap x{H , (101)
- -

where a is again the Lagrangian multiplier. Post-multiplying both sides of (101) by p¥}-, we
have

pxi<:3})<p*}=apxil':lrxp‘}- B
- -

so that the maximum available power is just (AZ/Zr’) a. The problem of solving (101) for its

ristic value and vector (the set of pattern samples) is essen-
tially identical with the general characteristic value problem (88) discussed in Sec. VI, The

main difference is that we have not shown a constraint corresponding to (89). It will be noted
that if p} is multiplied by a constant in (100), that expression is not changed, so no constraint

is necessary. On the other hand, if we had stated the available power to be

A2 .
W, = G R X AGHxprr

pX{lFxprp=1
I3

the solution vector resulting from (101) would have to be normalized to satisfy the above con-
straint. These are just two equivalent ways of stating the problem.
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It is difficult to make a precise Statement about the order of the G- and H-matrices (the

number of pattern samples) that need be considered. In general, if the pattern samples in-

cluded in the maximization are taken at all points on the sample grid from which appreciable
power density arrives, the indicated maximum available power cannot be increased appreciably
by including more points in the maximization. The fact that the antenna gain is bounded in-

sures that, except in the case of a point source located on the horizon, there will be a limit to

the available power regardless of the number of pattern samples included in the maximization.

The foregoing maximization is complicated by the fact that both the optimum pattern shape
and the optimum polarization of the receiving antenna are determined simultancously. As we
discovered, it is really necessary to proceed in this manner if a general power-density matrix
is under consideration. On the other hand, if the transmitting antenna is horizontally polarized,
for example, it would appear to be obvious that the receiving antenna should also be horizontally
polarized. We will next investigate the validity of such conjecture hy seeking the conditions
under which the optimum antenna, when driven at its terminals, produces tangential fields
Ey(x,y,0) and B (x,y,0) that are in a fixed ratio, independent of the location of the point (x, y, o)
on the aperture plane. Equivalently, we ask under what conditions the optimum antenna has the
pattern P (£, m) = a P (¢, m), with a some complex constant.

If the power densities are sufficiently well-behaved, as they will be in practice, the pattern

P] = Pi,m)

must maximize the ratio of the numerator integrand to the denominator integrand of (96) in
each direction (¢, m), for if it did not, more power would be available if P (£, m) # a P, (£, m).
In other words, if the optimum antenna is to have the pattern Py“‘ m)=a Px(l.m), we must
have
- 4,3} X [N(g,m)] = B¢, m) {P, (£, m) - 1,a}X [D(, m)]

or simply

1,3 X [Nit, m)] = B{£,m) 1,2 X [D(t, m)]
We have written the condition under which (102) maximizes the ratio of the numerator integrand
to the denominator integrand of (96). Note that the Lagrange multiplier # depends on the direc-
tion (£, m). Post-multiplying by the transformation matrix [T], given by (38), and using (94)
and (95), we have

{Lax(T)") x (8] = B{Lax[T);

so that the Lagrange multiplier is a characteristic value of the power-density matrix in each
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direction of space. The corresponding characteristic vector (consisting of a pair of horizontal

and vertical pl incidentally) is proportional to

Lax [TI[1 = n(m —af), (£+ am)
NET +m’

and may be taken to be

nlm—ag), (£+am)

We seek the conditions under which

n(m —ayg), (£+ am) x

with § an arbitrary (real, positive) function of (£, m) and a an arbitrary (complex) constant. If
B is eliminated from the two equations, there results, after some algebra,
2 2 2 =
(n“ |m —ag|“~ |2 + am|%) @py = nfm —a%y) (£ + am) (&

" tyy) o (109

the desired relation among the power densities that allows the polarization of the receiving
antenna to be fixed in such a way that P (4, m) = a B, (1, m) before the pattern shape is determined.

The condition (104) does not impose a particularly severe restriction on the power-density
matrix. It is obviously satisfied by uniform noise, for which &y = 0 and By = @yy: This
was, of course, to be expected, since the available noise power does not depend on the adjust-
ment of the antenna. (104) is also satisfied by the power-density matrix

0% |m - ar? n(m = a%f) (£ + am)
[®(¢,m)] = &(,m)

n(m —af) (¢ + am) e+ am|?

in which &(2, m) is an arbitrary real positive function of direction and a is an arbitrary complex
constant. It will be noted that this matrix is singular, 5o that the polarization of the plane wave
arriving from each direction (1, m) is also fixed in time. We have given examples of extreme
cases in which (104) is satisfied.

If (104) is satisfied, so that the antenna pattern is of the form (102), we have, after post-
multiplying (103) by P*],

B X [N]X P¥] = (2, m) P X [D] x P¥]

1
=8(Lm) |B (e, m)|? 4,2 x [D] x ]
o= a*

=8 m) Bl m) A m)
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in which
A(t,m) = 1,a X [D] x
- ax
2 '
S(-m%)r2mRefa) + fa? (1-42)

so that the power available with optimum polarization, as expressed by (96), becomes

3 A&, m) [P, (6, m)|? A(g, m) a0

P e, m)|? A(s, m) a0

with (¢, m) the greater of the two characteristic values of [#(2, m)] in each direction of space,

At this point, it should be clear that we are Justified in regarding g(¢,

A m), or more properly
(A%/2n) B, m), as the power density.

Having determined the polarization of the antenna, it remains to maximize the available

power by adjusting the shape of its patiern. We need work only with the x-samples, Bt +1/x,
m o+ s/yD). If these are numbered consecutively as before to form the set

then, from (91a), we can write
[B (e, m)| % = p X 1] X £ X p¥]
In terms of

G] = S B(e, m) f] X £ A(t, m) d@
wh.

H] = S' f]x £ A(t, m) d@
u'h.
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the power available with optimum polarization (106) can finally be written as

A% RXIG) X p¥)

= 2n pXHTXp]
As before, the condition for maximum available power is
pX[Gl=apX[H (111)

and that maximum power is just (A%/2n) a. It may be noted that both integrands (109) are real,
so that both matrices [G) and [H] are now real. This means that the characteristic vector p]
will also be real; the conjugate signs may be removed from (110).

A considerable simplification of the problem resulted when we were able to determine the
optimum polarization of the antenna before finding its pattern shape; the order of the G- and
H-matrices was cut in half. Further simplification is possible if the aperture dimensions of the

sinx
X
(91¢) vary rapidly with direction and tend to bunch in one direction. Let us examine the de-

antenna are large compared with the wavelength. In that case, the -functions £, given by

nominator integral (109), giving the element of [H] in the i™ row and k™ column. Let the orig-
inal numbering (r, s) correspond to i and the original numbering (p, q) correspond to k:

v sin x[xcil - lo)* r] var[yo(m - mo)_ 8]
Hye = S‘S TXgU—I)—T] iy, (m —m_)— 5]

sin(x, (¢~ £))- p] sinly (m-m)-q)
Tlxo (= 2)— p] 7y, (m —m )~ q]

Alg,m) L4

For large x, and y, the behavior of the integrand is largely determined by the four —Si;”‘ -
functions, so that the remaining factor, A(¢, m)/n, may be removed from the integral after being

o (The fact

set equal to its value at the point of maxi ibution of the
that 4/n~ at the horizon does not cause any difficulty, since

[T G
u.h. u.h.

exists.) In addition, the range of integration may be extended to cover the entire fm-plane.
The double integral may then be split into the product of two single integrals of the form

§ sinlx (2 —4)=r] sinlx (e~ 1,
wlxo(t = 2)—r] Tlxo(2—£,)~p]

0 otherwise
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The denominator integral under consideration is therefore approximated by

4 Ajlofi/x m_+s/y)

XY [ —
0% Ja=ty #1/x )% — tm + 5/

2 Y
and (g, + r/xo) +(mg + s/yol <1
0 otherwise

so that the matrix [H] of (109) becomes diagonal and of finite order. The same approximations,
when applied to the more general denominator integral (99), result in a matrix of finite order
having three non-zero diagonals:

By

It is interesting to note that these same approximations can be deduced from a physical
argument, which, although more difficult to justify than the preceding mathematical argument,
provides a valuable insight into the meaning of the approximations. The denominator of the
expression for available power, we recall, is proportional to the radiation resistance of the
antenna, or, originally, the power emitted by the antenna when a unit current is applied to its
terminals. The approach leading to the approximations consists of calculating the transmitted
power from (17), using the Fourier series (92) for the fields.

Strictly speaking, (92) applies only to the tangential fields, E_(x,y,0) and E_(x,y,0), and
only on the aperture plane of the antenna. On the other hand, any one of the terms of the sum
behaves like a component of a plane wave over the aperture. It would seem reasonable that
the normal field, E,(x,y,0), should behave like the third component of a plane wave, the tan-
gential components of which are given by (92), at least we would expect this behavior of the
normal field at points within the aperture that are well removed from the edge. In other words,
if the aperture is large enough, (92) is approximately valid for all three field components.
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In order to make use of (17), it is necessary to calculate the z-derivatives of the field com-
ponents, which requires a knowledge of the field components as a function of z in the immediate
vicinity of the aperture plane. Again it would seem reasonable to extend (92) as though cach
term represented the component of a plane wave progressing into the upper hemisphere.  For
z x 0, then,

»J27{[xi1°+r/xo)+y(mu+s/yo)+zn]
T B, +r/xg my+ s/y,) e
r,s

XO yo

for (x,y) inside the aperture

0 otherwise

n= Jtotag +r/xg)? — (mg + s/,

If this approximation is used in calculating (17), the transmitted power becomes, after several
steps,

A2 4

2 2 2
Ve T Re{ 3 1=ty +e/x ) = g +s/3)° B, +r/xg, my + /5] }

Since the radical is pure imaginary outside of the unit circle, only a finite number of terms
are involved in the double sum. If the divergence relation (10a) is used to express P, in terms
of B_and P, this expression for the transmitted power becomes identical with the expression
that would be obtained with the approximate H-matrix, (113):

A2 ,

W= 2 X {H} X p*}

In other words, the physical argument leads to the approximation (113) for the H-matrix; it
would also produce the diagonal matrix with coefficients given by (112) if the polarization of
the antenna were predetermined.

Another way of stating the result of the physical argument is that the transmitted power is
calculated as though a collection of true plane waves were crossing the xy-plane and progress-
ing into the upper hemisphere; the perfectly conducting sheet, however, is removed from the
xy-plane, and only that power passing through the rectangular outline of the aperture is counted.
In any case, it appears that the effects of the conducting edge of the aperture may be neglected
if the aperture is large enough. Presumably, the edge effects of other large antennas can also
be neglected. A dish, for example, which does not have an aperture bounded by the edge of a
hole in an infinite conducting sheet, might be handled using the same approximations. Regard-
less,of the structure of the antenna, its optimization will not make it superdirective if these
approximations are used.
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The same approximations, when applied to the numerator integrals (99) and (109), lead to
numerator matrices {G} and [G] of the same order as the corresponding denominator matrices,
but the simplification of the integrals is not so spectacular in this case. The numerator ma-
trices do not become diagonal because the power densities, as well as the S‘;“ -functions, vary
rupi(sl?l),"):vm\ dircction, preventing the grands from exhibiting the or alit; by

the S2X _functions by themselves.

Before closing this section, we will choose a representative power-density pattern and

optimize the patterns of a number of antennas of different size for this power-density pattern.

We are primarily interested in the shapes of the optimum patterns and in how much "gain loss"

may be recovered by using the optimum antennas; we are not particularly interested in polariza-

tion. Accordingly, we will suppose that (104) is satisfied, so that the polarization may be fixed

in such a way that Pv(l, m) =a P (£, m). We will choose a power-density pattern centered on

(£, m) and having the Gaussian shape

xyyn e-[xf(l—lo)z+yiz(m-mo
T

2
A
o B4, m) = (114)

The p: 16 x, and y, ine the P of the power-density pattern; we will sup-
pose that they are both so large that most of the power arrives from within a very small cone
of directions centered on the real direction (£, m ). The power-density pattern has been nor-

malized in such a way that the total power is

n

w- %ﬂ(l.m)dﬂzgz‘gﬁ(l.m)w

u.h.

"“ 2, 2, 2 2,
=[x, (£-2 ) “+y,“(m-m_)“]
I g‘g R ] © 'drdm=1watt . (115)

™
As yet, we have not given a physical interpretation for this "total power," but one will be forth-
coming.

We will choose large antennas having aperture dimensions comparable to x, andy,. The
grid of points at which pattern samples are taken will be so fine and the number of pattern
samples we will require will be so small that the factor A(£, m)/n can not only be removed
from the matrix integrals,(109), but it can be set equal to its value in the direction of maxi-
mum power density. Under these circumstances, there can be no doubt about the pattern
samples all being taken in real directions. The denominator matrix, (109), will be

Al ,m) pp Alt,,m )
r—2C flx f dedm= ——> [1]
[H) o S‘:S 1x L XA
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and the numerator matrix becomes
~ 2L A ) ( 22 pu,m) f1x f dfdm
(61 % £3 Ay, mg = £

The available power, (110), may be stated to be

W, =n_x
o

A B X [glxp]

oyo

subject to the constraint

with
(e
(gl = S‘S‘ {“2_77 ﬁ(l‘m)} f]x £ dtdm . (118)

The maximum available power is therefore just n Xy, @, where &, is the maximum charac-
teristic value of [g].

Before calculating the elements of [g] for the intermediate cases, x % X, and y = y;, we
will examine the extremes. First, if the aperture is very large (x, >> x, and y, >>y,), the
antenna can resolve considerable detail in the power-density pattern; the maximum available
power will be greatest in this case. We will suppose that the pattern samples are taken in
directions reasonably close to (¢, m ). The behavior of the integrand of (118) is then deter-

sinx

mined primarily by the ~functions, so that

2 B, m\ (¢
% :{%‘ —"no—"}g f]% £ dtdm

Bat/U
" xoyo
In this case, regardless of the antenna pattern [within reason: the pattern should still be con-
centrated in the vicinity of (£, m_)], the maximum available power will be n x 1y1/1r4
On the other hand, if the aperture is small, but still has dimensions of many wavelengths
so that the approximations for the i matrix are valid, if 4 << x << x, and

1<< y, <<y, the antenna cannot resolve the solid angle from within which most of the power
density arrives, As far as we could tell by adjusting the antenna pattern, the antenna is being
illuminated by a point source. The integrand of (118) behaves like the power-density pattern.

Throughout the present example we will use the renumbering scheme shown in Fig. 24 for
the pattern samples, so that the first sample is taken in the direction of maximum power den-
sity. The other elemental patterns, f,, are all zero in that direction, as can be seen from
(91c). In the present extreme case, then,
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The integral is recognized as the "total power," W= 1 watt, (115), and the maximum available
power is n X,y . The quantity noxy, is the area in square wavelengths of the projection of the
aperture onto a plane normal to the direction (lo, mO). This makes the physical significance of
the "total power" clear: It is the power per square wavelength of aperture area that would be
available at the terminals of a large antenna if all the power density were concentrated in a
single direction, and if that direction were normal to the aperture plane.

The characteristic vector making the power n x_y. available from a point source is

1

which corresponds to the pattern,
sin® xou —2) sinm yo(m - mo)

Bbm) = o Goq) wym—my)

The field component that gives rise to this pattern is of constant amplitude and linearly varying

phase over the aperture:
1 C-JZW(xloi‘ymo)
xoyo

Efxy,0) = i —1/2x,<x<1/2x, and —1/2y <y<1/zy,

0 otherwise

The normalization (117) will allow direct comparison of the amplitude as well as the shape of
the pattern that gives maximum plane-wave gain with the pattern giving maximum available

power from the diffuse source.
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If the pattern giving maximum plane-wave gain is used, the power available from the diffuse

whereas the power available from a point source of the same
m

source is evidently n X Y, &
total power would be n X Y.
maximum power available from the diffuse source is i,
" that can be recovered by optimum pattern adjustment.

The "gain loss" is therefore the ratio of 1 10 gy, And since the

i ; the
X, e the Tatio of g4 10 @y, is the

fraction of the "gain los:
It will be convenient to plot a normalized available power,
e
a No¥Xy¥y

as a function of a normalized aperture dimension,

Yo (120)
e -

v densit;
When the aperture dimensions are small compared with X and y;, or if all the power density

is concentrated in a single direction, this normalized available power may be obtained with the
i rea: w, =
pattern giving maximum plane-wave gain and is equal to the normalized aperture & A

(x,/%,) (3/y); when the aperture dimensions are of the order of x,

i i ivi i lane-wave gain is
available power is W, = (x,/X) (3,/%) g4 If the pattern giving max mumI p ai‘hg " mire N
used, and it is w, = (x,/%,) (3,/9y) @y if the optimum pattern is used; when P

mensions are large compared with x,

and y,, the normalized

and y,, the normalized available power reaches the upper
limit, w, = 1/7.
Next, we discuss the calculation of the elements of the g-matrix, (118).

mumbering (r, §) correspond to the new number i (Fig. 24), and let (p,q) correspond to k. The
th

Let the original

element of [g] in the i row and k™ column is then

© 2 2,2 2.

S‘ xgyy =lxy o) 4y (memgl] gy
P L
ik T

sinalx (4~ 1) = r] sina[y(m—m.) —s] sinalxy(t— 1) = pl sinrly(m—mg) - al
U —I) -] Fgm-m) =8l wxU- L] =Pl rlylm=—mg)=al

x

The integral may be broken down into the product of two integrals of the same form:
Bik = Brs, pq = Jrp Ksq = Trptor X1} Tl %)

With x (£ 1) replaced by A, the first of these becomes

2 .
_4 -A% sinm(cA —r) sinm(cA ~ p)
)T SEEE SEee e z2)

with ¢ the normalized aperture dimension (120). The evaluation of this integral is considered
in the appendix.
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With reference to (121), it should be noted that the new number i corresponds to the original

numbering (r, s), not (r,p); it is not possible to express the matrix elements as the product

8y = a;by, which, as we discovered in Sec. VI, would lead to a particularly simple result.
However, the fact that each matrix element can be expressed as a product of a factor depend-
ing on x-dimensions and a factor depending on y-dimensions, (121), will simplify the calcula-
tions considerably. (121) is a direct consequence of our having chosen a power-density pattern
that can also be written as a product of two functions: In the narrow range of directions where
(114) has appreciable magnitude, it may be written as the product of a function of the direction
cosine £ and a function of the direction cosine m. As a result of (121), the optimization of the
antenna pattern may be split into two simpler one-dimensional problems, as we shall now see.

The available power, (116), will be maximized subject to the constraint, (117), by the set
of pattern samples satisfying

P Xlgl=ap
which may be written

2Py gy = @b, s all k
i

in terms of the new sampling grid numbering, or

r,s

11
oq » @l pandq

in terms of the original numbering. (The unfortunate double use of the symbol p should not
cause any confusion.) Using (121), we have

z Ip 2 Prg Kgq = @Ppq » all pandg,
r s

which may be rewritten in matrix notation as
[l X [P X [K] = afp] (123)

in which [p] = [p, ] is the matrix of pattern samples, (P, (£, + r/xc, my + s/yo)], arranged in a
rectangular array corresponding to the array of points on the sampling grid. [J] and [K] are
square, symmetric matrices, as may be seen from (122). If the sampling grid has R rows
(different values of r) and S columns, [J] will be of order R and [K] will be of order S.

Now suppose that the characteristic value problems,

(124)

have been solved. If the transpose of the first of these equations is post-multiplied by the sec-
ond, we have

Pl Xulx v x K] =Apulx v
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uxy An (125)

is a solution to (123). In fact, there are R solutions to the first of equations (124) and S solutions
to the second equation and hence RS solutions to (123) of the form (125). But, since there are

RS points on the sampling grid and hence RS pattern samples to be determined, all solutions to
(423) are of the form (125), with u, v, A, and p determined from (124).

If the constraints,

Xul=1 and yxv]=1 (126)

are satisfied by the characteristic vectors of (124), the constraint (117), which may be written

variously as

2 2
=pxpl= T pS= 3 plg
i s

2 2 2 2
ZouvgsZu 32
r,s r s

S uXulXyxv] This matrix can be simplified by being transformed by the orthogonal matrix,

is also satisfied.

Physically, the characteristic vector u determines the behavior of the antenna pattern asa
function of the direction cosine £, and v determines its behavior with m; the optimum pattern
may be expressed as the product of a function of £ and a function of m, as may be seen from (91). ! “
The tangential fields over the aperture may be written in a corresponding product form, as may |
be seen from (92). The solutions of (124) corresponding to the greatest characteristic values,

a
7z

A and i, will result in the maximum available power.

Since we have chosen a power -density pattern that is symmetric about £ = £ (and about
m = mO], we expect an optimum pattern that is also symmetric about £ = £ (and about m = mo):
We expect the elements of the characteristic vectors of (124) to satisfy u_, 5= Vel
If the sampling grid extends symmetrically about the point (r, s) = (0,0), the elements of the

=u_(and v
r -

characteristic vectors of (124) will actually show either even symmetry, u__ = u_, or odd sym-
metry, u__ =—u_and uj =0, as we will next demonstrate.

We need the relations Jpr =J P and J-r—p = er. which may be seen from (122). When these

are used, the J-matrix becomes
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The simplification is

Wyp 952 Wit Il
Ui t3og2) Wagt oy

J
[M] x [3) % [M],= o©

0 Wy Vi

Wip=Jog2) Va2~

The original characteristic value problem, (124), may be rewritten in terms of the transformed
vector set u', given by
w=u XM .
The transformed characteristic value problem reads
ulx M]x (3] = Ag X (M),
or, after post-multiplication by [M],,
WX {M] X (3] % (M} = Awl X (M) x [M],

rg

-1, .
since the transformation matrix is or! L, ice. [M], = (M]"!. The corresponding constraint,

(126), reads
wxu] = u X [M]X [M] xu']=u! Xu'=1

The characteristic values of the simplified matrix, [M] X [J] X [M],, are cnaraczenszig
values of the sub-matrices located on its principal diagonal. The corresponding characteristic
vectors, u!, have zero elements in either the last (R — 1)/2 positions or the first (R + 1)/2 posi-

tions, depending on whether the associ; istic value is a istic value of the
upper left-hand sub-matrix or of the lower right-hand sub-matrix. If the characteristic value
is from the upper left-hand sub-matrix, only the first (R + 1)/2 rows of [M] are needed to calcu-
late the characteristic vector u, of the original problem (124), and it will be noted from [M] that

in this case, u__ = u . On the other hand, if the characteristic value is from the lower right-hand
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sub-matrix, only the last (R — 1)/2 rows of [M] are needed, andu__=—u_andu_= 0. Since
u, = 0 implies a null in the antenna pattern in the direction of maximum pl:)\ver d:nsuy it is to
be expected that the optimum pattern will show even symmetry, so that the upper left-hand
sub-matrix will have the greatest characteristic value. This was found to be the case in all the
calculations made.

Although the discussion up to this point has presumed a rectangular aperture and a power-
density pattern with unequal parameters, x, and y,, the calculations were further simplified by
making 5;)/y1 = xo/x1 = c, so that the normalized aperture dimensions are equal. It is conven-
ient to regard the aperture as being a square with side x, and the power density pattern as being
circularly symmetric about (lo’mo)‘ so that yy = x,. A square sampling grid with an odd num-
ber of rows and columns has been used. These simplifications make [J] = [K], so that [p] is
square; the maximum characteristic values and vectors of (124) are also equal: A
u=y.

i = Hpp and
At the start it was not clear how many samples would be necessary, so the greatest char-

acteristic values of a 25 X 25 g-matrix and a 49 X 49 g-matrix were obtained. These corre-

spond to sampling grids with 5 rows and columns and 7 rows and columns, or to J-matrices of

order 5 and 7, respectively. In none of these calculations did the greatest characteristic value

characteristic value of the 49 X 49 g-matrix by

S / —rrrrm  of the 25 X 25 g-matrix differ from the greatest

more than 0.0047 decibels. We may easily con-
clude that the sampling grid with 5 rows and

columns is sufficient for the present example.

The difference in characteristic vectors is

just barely discernible in the patterns in direc-

tions well removed from (lo. mo"

The normalized available power (119) is

plotted against the normalized aperture di-
mension (120) in Fig.25. The bottom curve

is the power available from an antenna having

ABILABLE POWER,wg

maximum plane-wave gain, and the sloped line

MaXMM r“’""’”"‘"‘ is the power available from a point source of

the same total power, W, when the same an-

tenna is used. The decibel difference between

these curves is the "gain loss." The middle

curve is the power available with optimum pat-

tern adji Since a istic value

problem must be solved to obtain each point on
the curve, only the seven marked points have

20 been obtained. The decibel difference between
APERTURE DMENSION, ¢

T
5 5
this curve and the lower curve is the recover-

Fig. 25. The available power increases with the  ,p1c ngain loss."
aperture area.
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The recoverable "gain loss" is disappointingly small; it is plotted in Fig. 26.

Figures 27 through 30 are a set of antenna patterns plotted from the characteristic vectors
of the 49 X 49 matrices. The optimum patterns are for alternate values of the normalized aper-
ture dimension for which calculations were made: ¢ = 1/1.5, 1/0.7, 1/0.3, 1/0.15. Although
the power-density pattern has circular symmetry about the direction of maximum power density,

the antenna patterns do not, because the aperture is not circular.

Figures 27 through 30 are
cross sections of the patterns in the plane m = m . Also, the patterns really get narrower as
the aperture dimension increases, but plotting them against xou - 10) makes the antenna patterns

appear to remain about the same width, while the power-density pattern appears to get broader.
The S% _pattern giving maximum plane-wave g

ain and the power-density pattern are plotted
for comparison.

The required distribution of tangential electric field on the aperture plane, resulting from
excitation of the antenna at its terminals, is plotted in Fig. 31, which shows contours of constant
magnitude of electric field across the aperture. (In the present example, the phase varies linearly
over the aperture at rates proportional to the direction cosines £ and m .) Figure 31 has been
plotted for the normalized aperture dimension, ¢ = 1/0.7, the value at which the recoverable

"gain loss" is the greatest. The normalization is such that

S‘S‘ !Extx,y.ﬂbiz dx dy = x ¥,

g
H
Yo
i

We may conclude from the foregoing example that, if the power density pattern has a
Gaussian shape, the effort required to design and construct an optimum antenna will generally
not be sufficiently compensated by increased available power.

designed t

In many cases, an antenna

o have low side lobes will deliver more power than an antenna of the same size hav-

e menson < ing maximum planc-wave gain. It seems reasonable to extrapolate these conclusions to any

power-density pattern having a single, fairly well defined maximum.
y tenna having an optimum

Fig. 26. The power advantage of an on

pattern is not very great.
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sin TXo( 4 o)
ot g)

— 1

Fig. 29. As the aperture area increases,

Fig. 27. When the aperture area is small, the optimum pattern is shaped like the side-lobe level of the optimum pattern decreases.

the ﬂ% -pattern giving maximum plane-wave gain.

9
'VcPvluuu PATTERN

POWER DENSITY

sin 7 Xol o) sin Xl )
TXot o) : XU )

3t

NG

N— “,

Xof )

N / Xot2 1 ot

Fig.30. The aperture area for this figure is large.

Fig.28. The aperture area for this figure is larger than the aperture
area for the preceding figure.
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Fig. 31. Contours of electric field amplitude on the aperture plane
for an antenna having an optimum pattern.
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VIII. OPTIMUM DIVERSITY

In discussing the optimum coupling network for the set of electrically separate sources of
Fig.16, Sec. VI, we found that in the extreme case when the open-circuit source voltages are
perfectly correlated, the coupling network can deliver a power to a single load cqual to the sum
of the powers available from each source separately. But if the source voltages are completely
uncorrelated, the other extreme, the maximum power available from the coupling network, is
only the greatest of the powers available from each source separately. We also remarked that,
if the sources represent elements of a receiving array, the desirable perfect cohercnce between
source voltages may be expected to persist for a period of time short compared with the fading
period of the arriving signal, but that a time-varying coupling network would then be required
to take advantage of this coherence Although it will be convenient, initially, to regard the time-
varying coupling network as an extension of the work of Sec. VI, the resulting apparatus is really
a form of spaced-antenna diversity which results in the maximum signal-to-noise (power) ratio
of the resultant signal.

The signal-to-noise ratio available from a number of coherent but noisy sources has been
maximized by Kahn,'® this maximization has been established in a more general form by
Brennan,'” and i ions of the result have been described by Kahn and by
Mack,?° who calls his equipment "combiner diversity." But whereas the equipment discussed

by Kahn and Mack combines the signals after detection, we will arrange to combine signals before
detection: The equipment suggested by this section will continue to deliver the maximum signal-
to-noise ratio of the resultant signal even if the signal power available from each antenna is less
than the noise power.

We will again represent the terminal-pair behavior of an array of N antennas by the set of
disconnected sources on the left in Fig.16. This representation entails no loss in generality,
for, if there is appreciable mutual impedance between the terminal pairs of an actual array, the
array elements may be interconnected as in Figs. 20 and 21 to produce an equivalent set of N dis-
connected sources, capable of supplying the same power. The analysis of this section will then
apply to the equivalent set of sources.

In terms of the matrix of transmission coefficients, t], and the matrix of normalized open-
circuit signal voltages of the sources in Fig. 16, V/VBR] (Eq. 75), the instantaneous signal power
in the load, Ry, is

By "instantaneous" power we mean the power averaged over an integer number of radio-frequency
cycles, but not averaged for such a long time that the modulating waveform and particularly the

fading waveform has a chance to change. As we discovered in Sec. VI, this instantaneous power

is imized subject to the s

t Xt =1 (68a)

by the set of tr

105

UNCLASSIFIED

Sanitized Copy Approved for Release 2010/07/13 : CIA-RDP81-01043R000500080007-7



Sanitized Copy Approved for Release 2010/07/13 : CIA-RDPS!

UNCLASSIFIED

i

\with © an arbitrary phase shift, and the maximum instantaneous power is

(79a)

from each source separately. If

which is the sum of the i signal powers
the transmission coefficients are continuously adjusted according to (80a) to maintain the maxi-
mum instantaneous power (79a), the mean signal power is again the sum of the mean signal powers
available from each source separately. The mean noise power, as discussed in Sec. VI, is inde-
pendent of the adjustments of the transmission coefficients if, as we shall assume, the noise
arrives uniformly fron directions in space.

It is enlightening to regard this continuously adjusted array as a single composite antenna.
lable from an array (of electrically separate elements)

s available from each element. Thus,

We note that the maximum power avai
illuminated by a poimt source is also the sum of the power.
if the individual elements of our composite antenna are not subject to "gain loss" when they are
illuminated by a diffuse source, the composite antenna itself will not suffer "gain loss" when
illuminated by the same difuse source!

To within the spproximations discussed in the last section, which are valid when aperture

pared with the wavelength, the power available from an element of the
composite ar croportional to its aperture area if the elemental antenna is too small to
*resolve® the power-density pattern, but approaches an upper limit as the aperture area is in-
creased (see Fig.25). Apparently, if its total aperture area is fixed, the composite antenna will
deliver the great power if its elemental antennas are reduced in size (and increased in number)
until they can no loa esolve® the power-density pattern. From the point of view taken in the
introductory k employing this continuously adjusted array will be most eco-
nomical of the &; areas of transmitting and receiving antennas if the transmitting antenna
and each of the elemental antennas of the receiving array are not able to resolve the scattering
region.

We have seen tha: a continuously adjusted array can deliver more signal power to a matched
load than a single large antenna having the same aperture area. But if each transmission coef-
ficient of the time-varying coupling network is to be made proportional to the conjugate of the
signal voliage at the terminals of the corresponding array element, as required by (80a), it would
appear that the signal at each array element would have to be known exactly in order for the com-
posite signai to be received with maximum signal-to-noise ratio! In addition, we should be con-
cerned about whether the time variations of the transmission coefficients will perturb the com-
posite signal. Fortunately, for one choice of the "arbitrary phase shift," © of (80a), a complete
knowledge of the signals is not required, and the time variations of the transmission coefficients
do not perturb the composite signal, as we shall now see.

It will be necessary to differentiate between signal variations caused by modulation of the
transmitter and signal variations caused by fading. As shown in Fig. 32, we will suppose that
the itted signal is ified differently in ing each of the paths from transmitting
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antenna to the - ece 8 it
© various receiving array elements. Me © is the vector transmitted signal h:
al having
uency w_ a
q mq g and modulation described by the complex time function M. (The
at the transmitting antenna te. 2 Yot
i ey e e ot erminals would be proportional to Re{Me/“0'}.)
arr, the vector signal is subjected to fading; it varies
, Which may be regarded as the ith
: a
Before the signal appears as the voltage at the te o ot i3 oo

the radian carrier fre:
instantaneous current

ay element,
in proportior to the complex time function K,

rminals of the i array el
o y element, noise is added;
e various path noises will be assumed to be uncorrelated and equal in power.
) y e Note that the model of Fig. 32 precludes the

_n v effects of multipath transmission: If the trans-
Vi giwet i
: e mitter is pulsed, a single replica of that pulse

; v is received by each of the elemental antennas.

NI o
S~

BR, thanthe assumptions discussed in Sec. 11, it is

Although this assumption is more restrictive

Kn
often met in practice and is necessary for the

YN giwgt
— proper functioning of the apparatus we will de-
vise. Since the path gains K; are assumed to
Fig. 32. Model of the radiopaths from the transmitting ~ be independent of frequency (over the band of
antenna to the various elemental antennas of the re- p, i
Sotemna to i requencies occupied by the transmitter), no
provision is made for the time-of-flight of the
signal from transmitter to receiving site; this is of no consequence here
From Fig. 32, the matrix of normalized open-circuit signal voltages of the array elements
may be written

=MK
K (127)
in which K is the matrix of path gains. The maximum instantaneous power, (79a), becomes
2
IM|® K xK*] (128)

and it may be obtained if the transmission coefficients, from (80a), are

M* *eJB—( M Je) K

M) X w2
The corresponding normalized open-circuit signal voltage at the output of the coupling network
is then

R,
= (: 1, /=2 in the notation of Fig. 16)
O VEXKY . (130)

s ix—L

Lx——l=u
8R
From (130), we see that the signal emerging from the coupling network is proportional,
among other factors, to the root-sum-square path gain — a real, slowly varying function of time.
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1t we chose the phase shift © to be a constant, the phase of the output signal would also be con=
stant; only the amplitude of the output signal would vary. in proportion to the magnitude of the
1d emerge from the coupling n

ee that thy ra -
fading slowly in amplitude only! from (129), we see that the uumyb
+ would have to be adjusted in accordance with the phase of the modulation!
previously. Clearly, the appropriate

i k as a carrier,
modulation. A frequency-modulated signal wou etwork as a ¢ r
Under the same conditions,
mission coefficient
This choice of © leads to both of the difficulties mentioned
choice is

o=ArgM (131)

For this choice, the transmission coefficients need only be adjusted in accordance with the slowly

varying path gains:
O
. s (129a)
= NEKxK¥

the output signal is directly proportional to the modulation:

= MNKXK¥ (1302)

and neither of the difficulties appears.
If the tr is dulated (M = 1), the i
varying coupling network, (128), is
N
2
"
Kxk*= 3 Ikl
i=1

power availablé from the time-

Unless the magnitudes of the path gains are perfectly correlated, the relative spread in the dis-

tribution of power output due to fading will be less (in a mean-square sense) than the relative
spread in the distribution of power available from one of the array elements.
the decibel fading range is reduced by the continuously adjusted array — another of its advantages
Staras?! discusses the case in which the | K, | are independent and Reyleigh-distributed. These
expected to hold for short periods of time, say of the order of an hour, and

In other words,

conditions would be
if the array elements were appreciably separated in space. He points out that the power output
follows a Chi-square distribution (having 2 N degrees of freedom), which he plots for N up to 10
It remains for us to find an appropriate
Ky NOISE  FRONT IOENTICAL measure of the path gains and to show how these
gelost  may be obtained and used in an electronic reali-
zation of the time-varying coupling network.

Ki H H
ot First, since the instrumentation is to be elec-

Ejele!

tronic, we will need workable signal levels,

and it will be expedient to filter out the noise

exe™'  except within the band of frequencies occupied
by the t i . Suitable ar g are

::Sgﬁ;,;:;,im"":,',,,:ﬂ’,;‘:’:’;,?ﬁf,"::f""""’ toin=  jngicated in the block diagram of Fig. 33, which
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will be used as a

model of the problem at hand. The outputs of this model, the E's, are the am
It will be assumed that the fi at
° ront-end gains have b
tsod vels of these outputs are the same o -
noises in the different outputs are uncorrelated .
see. If the front e

plified and filtered array element voltages

set s0 that the noise le
and, as discussed previously, the

These considerations are important, as we shall

nds include

e tront e e ¢ mixers, as will generally be convenient, it is also important that a

o : e used. The signal-to-noise ratios of the outputs will all be degraded

igure:

v gures of the front ends, but this unavoidable loss would also appear if a passi

coupling network and single front end were used. ? "
Aft ic i y

t er amplification, the question of obtaining maximum power does not arise; it is the signal

o-noise ratio tha i : cady

. 1 dw that must be maximized. The latter problem, however, is not new; it has already

een solved: We found that, in additior i : ;

: . n to providing maximu: i

peen e e o m power in a matched load, the cou-

Vv
5,

also results in a maximum signal-to-noise ratio when the transmission coefficients are adjusted
according to (1292), since the output noise power is independent of the adjustment of the trinz-e
mission coefficients (when the noises from the separate sources are uncorrelated and equal in
power). By setting the front-end gains in Fig. 33 to equalize the output noise levels, we have
b.rougm the output signal voltages, the E's, into proportion with the normalized ope;-circuile
signal voltages of the array elements, i.e.,

v

E] «
VR

Thus, the signal-to-noise ratio of the combined output,
E =t XE|

or a multiple thereof, will also be a maximum.

It will be convenient to lump the fixed, equal front-end gains,

with the path gains, K;, in Fig. 33, so that the output signal voltages may be written

E=MK . (133)

Defined in this way, the path gains of Fig. 33 are no longer equal to, but are in direct proportion
to, the path gains of Fig. 32. This will make no difference in the "transmission coefficients," as
may be seen from (129a), and, of course, the absolute level of the combined output (132) is im-
material: We will continue to use the same symbols, K,
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The combined output,
(132a)

then, would have the maximum signal-to-noise ratio, and it would have a fixed noise level. The

root-mean-square signal level would be proportional to

The combined output,

= K¥ (134)
F = K* X E]

would also have the maximum signal-to-noise ratio, but the root-mean-square noise level would
vary in proportion to NK X K¥], and the root-mean-square signal level would be proportional to
KX K*|. (The "mean" in these statements is interpreted as an appropriate short-time average.)

In the design of a receiver, it is often convenient to use automatic volume control to hold the

root-mean-square signal level fixed. This may be accomplished after the outputs of Fig. 33
It will be simplest to realize a circuit having the combined output (134),
of the path gains.

ins, which are

have been combined.
for which the ini i are simply the

We return to the problem of finding an appropriate measure of the path ga
defined by (133). Ifit were not for the noise, we might measure M at the transmitter and E; at
E./M. This possibility is not too far-fetched, for we hope to recover

the receiver, giving K;
M at the receiver as well. It is the noise that causes the real difficulty; this estimate, at any
instant of time, would be intolerably noisy. We recall that the path gains, which are the signals
received when the transmitter is unmodulated (M = 1), vary only slowly; they describe the fading.
Thus a short-time average, taken, at each instant, over a period of the past that is small com-
pared with the fading period, would provide an accurate estimate of a path gain and at the same
time would reduce the noise power of an instantaneous estimate by a factor equal to the product
of the averaging time and the bandwidth of one of the filters shown in Fig. 33. For example, if
the system (and filter) bandwidth were 100 keps and the fading were slow enough so that we could
average over 0.1 second of the past, the averaging process would reduce the noise power by a
factor of 10,000. Using this averaging process, we could obtain a continuous good estimate of

a path gain for output signal-to-noise ratios of that path greater than about -40 decibels. This

short-time average will be indicated by the notation *'{ }.

If the short-time average is performed by a linear passive network, as we intend, contribu-
tions to the average will be weighted in accordance with how far back in the past they occurred.
Another kind of weighting may be consi D AT measure of a path gain would be

E;
_av.) Ei
Tt {g M} .

with the arbitrary time function, g, real and non-negative. To be consistant, the same weighting
function, g, would have to be used in measuring the gain of each path.

It would be sensible to pick g in such a way that it increases with the magnitude of the mod-
ulation: g a monotonic increasing function of |[M|. This kind of choice gives more weight to the
instantaneous estimate, E;/M, when the signal amplitude, and hence the signal-to-noise ratio,
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is momentarily high. On the other hand hould weightin,
er , it shoul i

function 1 relativety untemmeon be emphasized that the choice of weighting

tained when the outputs of Fig. 33 are pr

First, the "direct nois

red with the maximization of signal-to-noise ratio ob-
operly combined, (134), usin;

° . , g the measured path gai

€' in the combined output, ecing

due t ;
the noise that has been adde. © & noisy estimate, K;, but neglecting

will be almost indistinguishable from the fading,

estimated path gai, i
the short-time average. We may the gain will be limited by the network performing

h d to each output,
since the rate of variation of the

[ versge Wem refore disregard the variations in the estimated path gains
e vonotse, wnd ve s eft with the prospect of having a reduced signal-to-noise ratio result-

perly determined, but momentarily fixed "transmission coefficients. "
when the estimates are violently in error "

due to noise,

Except

this effect is again small, A i

! . As we discovered in Sec.
the correct estimates result in a stationary point of the signal-to-nois e

tional error, e ratio. Thus, a small frac-

in one of s

. the estimates would result in a smaller fractional error of the order of le|? ared

tion of course, in the signal-to-noise ratio. e
A

l reasonable choice of weighting function is g = |M|. We will accept this choice not because

it is optim i

ptimum in some sense, but because it leads to particularly simple circuitry. Our est

of path gain will be " cetimee

E
= Av. il _ A -
K, = I{JMJ‘}: }’(ElejArgM}

Not having a copy of the transmitted signal at the receiver, we will use the phase of the com-
bined output (134) as an estimate of the phase of the transmitted signal. This estimate will be
quite satisfactory as long as the signal-to-noise ratio of the combined output is only slight]
greater than unity, since errors in this estimate affect only the measured path gains. Thug our
measurement of path gain will give '

-jArgF.
Av. JArgF,
K. =
Tt {E; e . (135)

and we will obtain the combined output

N
ArgF,

.. Av. JArgT,

F,= 3 E I{Ei‘e (134a)

i=1
Containing, as it does, the output F, on both sides, (134a) is reminiscent of the equation of
an oscillator. In fact, the circuit for obtaining this output, shown symbolically in Fig. 34, is an
oscillator of sorts. The inputs to this circuit are the outputs of the front ends and filters shown
in Fig. 33; the output appears at the upper right of Fig.34. The tuned circuits marked w, per-
form the short-time averages. They are all tuned to some (radian) frequency w, < v au:d have
bandwidths of the order of the reciprocal of the averaging time ' (10 cps in the numerical example
previously mentioned). The limiter delivers a constant-amplitude output sinusoid (chosen to be

114

UNCLASSIFIED

Sanitized Copy Approved for Release 2010/07/13 : CIA-RDP81-01043R000500080007-7




roved for Release 2010/07/13 : Cl

UNCLASSIFIED

one volt in Fig. 34), and the phase of its output is the same as the phase of the input. The limiter
should have sufficient dynamic range to limit properly on noise.
Noting that the instantaneous frequencies

P S e !
LIMITER [ T of the signals emerging from the tuned circuits
X

must be close to w, , we see that the instantaneous

4 E | frequency of the signal leaving the second mul-
i _l tiplier in each channel must be about w  — @,
e (It is assumed that product components at the
sum frequency are suppressed.) The output,
which is the sum of the outputs of the second
"{E"'A multipliers, may then be represented as having
1 ‘Ll the carrier frequency w — @, as has been
Eeint done in Fig. 34. It may be seen, by following
an assumed output through the processes of

fworait R e )
e (el ol limiting, first multiplication, averaging, sec-

€161 Fagivt

ond multiplication, and summing, that the cir-

:
G cuit of Fig. 34 does indeed produce the output
Bl by (134
P given by (134a).

The properties of this combining circuit
Fig. 34. Anel icrealization of the ti i"g  may be deduced either from the figure or from
couphng network .
(134a). Suppose, first, that the phases of all

the inputs are advanced suddenly by the same amount, simulating a step increase in the phase
of the modulation. Nothing will happen immediately to the tuned-circuit voltages (the short-
time averages will remain fixed), but the phases of all the second-multiplier outputs and hence
the phase of the output will advance by the same amount. The phases of the first-multiplier
outputs (the quantities being averaged), however, will not change. Hence there will be no addi-
tional, long-term change in the output phase. In other words, the phase of the modulation is
reproduced in the output, perturbed, possibly, by noise and fading. The output behaves differ-
ently with amplitude changes, however. For rapid changes in the amplitude of the modulation,
the output follows the input because the tuned circuits cannot follow the input changes. But if
the modulation amplitude changes slowly, at a rate less than or comparable to the fading rate,
the output amplitude varies as the square of the modulation amplitude: The tuned circuits can
follow these slow changes, and the magnitude of the loop gain of this "oscillator" is twice mul-
tiplied by the amplitude of the input signals. From another point of view, the decibel fading
range in the output is twice the range that would be obtained from a circuit using normalized
and p ing the ined output (132a). As we have already noted,

this diffi may be miti by an ic volume control operating on the combined out-
put F,.

The behavior of the circuit of Fig. 34 in the absence of signal and under the influence of
noise alone has not been studied, either experimentally or analytically. Nevertheless, we may
conjecture about its behavior when the inputs are filtered Gaussian noise. First, if the noise
inputs are uncorrelated and equal in power, we would expect the tuned-circuit outputs to vary
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slowly in amplitude and phase, behaving very nearly like independent filtered Gaussian noises
having the same power. The application of even a very weak signal should cause the tuned-
circuit outputs to tend to fall in a fixed proportion in such a way as to maximize the signal-to-
noise ratio at the output.

On the other hand, if one of the noise powers were greater than the others, we would expect
the corresponding tuned-circuit output also to be large. In fact, we would expect the large tuned-
circuit output to suppress the others in such a way that the combined output follows the greatest
input noise rather closely. Similarly, if the input noises were partially correlated, we would
expect the tuned-circuit outputs to tend to adjust themselves so as to maximize the output noise.
In either of these conditions, the ining circuit may be reg as biased; its adjustment
favors one set of input signals. A fairly strong signal would then be required to overcome the

bias and cause the tuned-circuit outputs to readjust themselves properly for that signal.

The circuit of Fig. 34 bears a resemblance to the circuits devised by Price? for another
application. The resemblance would be stronger if the limited output were replaced by a stored-
reference signal, having some of the characteristics of the signal expected from the transmitter.
If a stored-reference signal is available at the receiver, such an arrangement is preferable to
the circuit of Fig. 34 when the output signal-to-noise ratio is small.

ACKNOWLEDGMENT

It isa pleasure to ocknowledge the many helpful sug-
gestions and criticisms offered b{ my ca(eagues at the
Massachusetts Institute of Technology and at the Lincoln
Laboratory. In particular, the course of this paper has
been strongly influenced by discussionswith Prof. F.M.H.
Villars, Prof. W.M. Siebert, Mr. J.H. Chnshalm, Dr.
S.C. Wang, Dr.W.L. Root, Dr.S.J. Fricker and Mr
W.C. Mason. The numerical calculations in Sec. VII
were performed by and under the supervisionof Mr. P.A.
Duffy. My wife has been a constant inspiration fo me in
the preparation of this paper, and she has spent mnn{

correct th The researc]
reporred here was conceived and wggened to me by Dr.

T. deBettencourt.

143

UNCLASSIFIED

CIA-RDP81-01043R000500080007-7




UNCLASSIFIED

REFERENCES

Perhaps the best single reference that can be given is the Scatter Propagation Issue of
Proc. I.R.E. (Vol. 43, No. 10, October 1955) whl:h contains a series of well-documented
i ical views of the subject.

articles rep various experi

Schott, "On the Response of a Directive Antenna to Incoherent Radiation, " Proc.

W
1R.E. 39, 677 (1951).

. H.G. Booker and W.E. Gordon, "A Theory of Radio Scattering in the Troposphere,
Proc. I.R.E. 38, 401 (1950).

. W.E. Gordon, "Radio Scattering in the Troposphere " Proc. I.R.E. 43, 23 (1955).

D.K. Bailey, R. Bateman, L.V. Berkner, H.G. Booker, G.F. Montgomery, E.M.
Purcell, W.W. Salisbury and J.B. Wiesner, "A New Kind of Radio Propagation af Very
High Frequencies Observable over Long Distances, " Phys. Rev. 86, 141 (1952).

F. Villars and V.. F. Weisskopf, "On the Scattering of Radio Waves by Turbulent Fluc-
tuations of the Atmosphere, " Proc. |.R.E. 43, 1232 (1955).

H.G. Booker and P.C. Clemmow, "The Concept of an Angular Spectrum of Plane Waves,
and( Its R)elﬂﬂon to That of Polar Diagram and Aperture Distribution, " Proc. I.E.E. 97,
11 (1950)

. H.G. Booker, J.A. Ratcliffe and D.H. Shinn, “Diffraction from an Irregular Screen with
Application to ionospheric Problems,® Phil. Trans. 242, 579 (1950).

. Watson, A Treatise on the Theory of Bessel Functions (Combridge University Press,
1948), pp 20, 373 and 54.

. B. Chance, V. Hughes, E.F. McNichol, D. Sayre and F.C. Williams, Waveforms,
Radiation Laboratory Series, Vol . 19 (McGraw-Hill Book Company, New York, 1945),
pp. 37, 323 and 664.

. V Belevnch "Synhhbse des Réseaux Elecmqu!s Passifs & an Pmres de Bornes de Matrice
" Annales des 6, 302 (1951).

Zi‘B.IHildabmnd, Methods of Applied Mathematics (Prentice-Hall, New York, 1952),

Ibid., pp. 68-80. The Discussion is generally applicable to Hermitian matrices if the
scalar products, e.g. (230), and quadratic forms, e.g. ), are mmpmad as
Hermitian scalar products and Hermitian forms. See also pp. 42~

E.A. Guillemin, The Mathematics of Circuit Analysis (John Wiley & Sons, New York,
1949), pp. 59-62

d H.T, Friis, Antennas: Theory and Practice (John Wil
New York, 1952), . 159 and 162. actice (John Wiley & Sons,

Ibid., pp. 195-198.

22
J.8. Rosser, Theory and Applications of [ e -2 dx and [ZePY dy J7 e~
(Mapleton House, New York, 1948), pp. 190-191.

L.R. Kahn, "Ratio Squarer," Letter to the Editor, Proc. I.R.E. 42, 1704 (1954),

114

UNCLASSIFIED

ved for Release 2010/07/13 : CIA-RDP81

1043R000500080007-

UNCLASSIFIED

. D.G. Brennan, "On the Maximum Signal-to-Noise Ratio Realizable from Several Noisy

Signals, " Letter to the Editor, Proc. I.R.E. 43, 1530 (1955)

ack, "Diversity Reception in UHF Long-Range Communications, " Proc. I.R.E.
lZBl (1955).

. H. Staras, "‘The Statistics of Combiner Diversity," Letter to the Editor, Proc. I.R.E. 44,

1057 (1956

. R. Price, "Optimum Defection of Bandpass Gaussian Signals in White Gaussian Noise,

with Application to Receiver Design for Scatter-Path Cemmumcanon —1," to be submitted
to Trans. I.R.E., jonal Group on Theory, for p jon in December
1956 issue .

115

UNCLASSIFIED

Sanitized Copy Approved for Release 2010/07/13 : CIA-RDP81-01043R000500080007-7




roved for Release 2010/07/13 : Cl 11043R000500080007-7

UNCLASSIFIED

APPENDIX

Our purpose here is to evaluate the integral
c2 .
S‘ oA sinm (ed —r) sinm (cA
T{cA—1) 7 (c

with r and p integers.

M) If N (x) is defined as in Fig. A-1, we have

S‘ M Cm_]lrrxi)\-r/(} dx = sx,x'-m (cA r)r;

When these integral representations are used for
Y e the SINX

X ~functions, we have

Fig. A-1. The pulse, M(x).

- - w
2
erz—L— S‘ e an g (x) e"i2mx(A=r/e) g S‘ 1 (y) e2TA=P/e) 4

N

or, after inverting the order of integration,

w ‘ w .,
4 ( M (x) I2TX/C gy g n(y) eT2mP/e gy g oA J2mlyxA gy
L

The last integral, which we will call I;, may be evaluated by completing the square:

a2
- S‘ oA damly=0n gy

b3 : 2 2
iyt { o jerty-xprri(y-x)] g
2 2 ¢ . 2
_omilyx) S‘ RS )
or, with p = A—jm (y—x),

by 2 2
r2y-0° S‘ E-uz au=NTe™ X
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and J  becomes
rp

o . o 2 g2
Ipp® S‘ ) Gemxr/e g S‘ ) emizmyp/e mily=x)" gy
S S

Next we make two changes of variable. First we replace y by (x + u) in the second integral
and change the order of integration, giving

« . w
Iep® S‘ mtm)” mjzmup/e g, S‘ F(x) 1 (x + ) I2TXEP/C gy

Then we replace x by v — % in the second integral:

- ) -
P g e tmu)® -imulrep)/e g, S‘ nv-Hnw+P gdemvir-pl/e g,

We will call the second integral I,. Apparently
it is an even function of u; the magnitude of its
integrand is the product of the two M=-functions
shown in Fig. A-2. Note that if |u[ > ¢, I, =0,
so we need only be concerned with the range
—c<u<e Ifp=r,

I

and if p # r,
Fig. A-2. The two M-functions are symmetri-
cally displaced.
. ul
iS-(c—ruh/z Jemir-pl/e o sinm (1 - 1) (r—p)
& Lie-luly/z e r=p)
sine (r— p) cos TIULE=P) _cogr (o py sin 1l 2=p)
- <
mc (r—p)

i 7 lul (r—p)
PN

T (r=p)
since r and p are integers.

Taking the special case p = r first,

C 2 N
Lz g (c—|ul) e"(m) enizmur/e g
o Lo
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If this integral is split into the sum of two integrals having the ranges — <u<0and0<u<ec,
and if u is replaced by —u in the first, the sum may be written

2
2 (¢ -(n
J”L:&‘go(o-u;c"“’ coszruldu

or, with u = ex,

1 trex)?
.]rrzlg (1-x e "X cos 2m rx dx
o

In the more general case when p # r,
(r-p) e 2
PR ) -(m) -jmu(r+p)/c
Tep = "relr =R ), © sin e du
The range of this integral may also be cut in half as before:

(r-p) (e 2
21 -(mu) mu(r-p mu(r+p
Sep T TR Y, © sin TUAE =P gog TR TP du

and, with the aid of the appropriate trigonometric identity,

)P
T (Irflp) B

in which -

C 2
1 :lg ™ i 2ru £ du
c b c

or, with u = cx,

1 (ren)?
e sin 2n e ax

(A-3)
o

The integrals (A-1) and (A-3) cannot be performed by elementary methods. However, if
the upper limits are arbitrarily extended to +=, they can both be evaluated in terms of tabulated
functions, and if the parameter c (the normalized aperture dimension) is large, the error in-
volved will be small. Even with ¢ as small as unity, the exponential has dropped to about
50 x 107 at the present upper limit! Fortunately, we will be interested in values of c of the
order of unity or greater, so the approximation appears to be reasonable. We will calculate
approximations for the integrals and give an upper bound for the exrors
the second integral, (A-3),

- 2 o a2 s
L S; (10" gin 27 rx dx = dm {S; om(mex)” gjemrx dx}

involved. Starting with
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Completing the square,

1% dm {e-(r/t‘)z S‘” e-[(?rcx)z-JZwrx»(r/c}Z] dx}
5

2 0 N 2
N e-(r/c) am {S; e-(ncx-jr/c) dx}
or, with the complex variable, z = (1 cx— j r/c),

2 w-jr/c 2
1 -(r/c) 7 -
LN¥ice / dm {S‘ e dz}

Fig. A-3. Path of integration in the com-
plex plane..

-ir/e
The path of integration may be taken to follow the imaginary axis to the origin and then along the
real axis to infinity, as shown in Fig. A-3. The integral along the real axis is pure real, so we
are left with the integral along the imaginary axis. With z = —jy, the latter integral becomes

2 0 2
1 - :
e e (r/c) Jm{ﬂ &‘r/c o dy}

2 prfc 2
.4 r/e)
sc e i e dy

The function
2% 2
D(x) = S; e dy
17 . .
is tabulated.!” In terms of this function, the approximation to I reads

~ L pd)
Ir nc D(C)

The approximation to J__ is

0 2
p—— zS; (1 —x) e ™9 cos 2m rx ax

* —(rex)? * z
=z£ e cosanxdvaS; x e ™X)” cos2n rx ax

The first integral may be written
t3 2
L= S‘ omlrex)® jamrx o

and it may be performed by completing the square. The result is
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Lot /e

S Wme

The second integral may be integrated by parts:

w 2
T

2 | o 2
A cosznrx e (TH) + 2 S e 530 27 rx dx

‘rlZ CZ o me o

The integral is recognized as the approximation to 1, hence
2r_ ot
+53 Dig)
e 1te
and the approximation to J_is

PRty L 2r or
T )

™o Nre IR
The approximation to ., from (A-2) and (A-5), is
_g)(r-P)
g mo o -pBy (-1
P gfr-p e
It may be noted from (A-1) that the central integral, J,, can be expressed exactly in terms of
tabulated functions:

1 2 1 2
J :zg e (mex)” gy S e (mex)” o ax
oo o o

T N L } ! [1 ""’Z] (A-8)
- I ) .
N7 e {G-g; el

This central integral is of primary importance in determining the power available at the antenna
er available from an antenna with a square aperture having maximum plane-

"The exact value (A-8) is used in the numerical calcu-

terminals; the pow
wave gain is proportional t0 g4 = Joo-
lations described in Sec. VII.

We will not attempt to relate the error in
to the errors involved in the approximations (A-6) and (A-7).
e to compare the errors with the central integral:

the maximum characteristic value of the g-matrix
In giving an upper bound for the

latter, it will be appropriat
B} |er(exact)-Jr (approx.) |

€rp T oo (BPPFO

From (A-6),
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and it will be convenient to use
g s
0 \re

for ¢ greater than 1/2, this error in the error calculation will reduce the true error by a factor
lying between 0.6 and 1.0.
From (A-1), the fractional error in J_ is

— ad 2
e =awTc s; (1 - e ™ cos 2r rx dx
rr
- -(rex)?
gzwci (x-1) e dx

- _—
N N
1

e 2
L]
3

T
L

T

L

T

L L L
04 08 08 10

NORMALIZED APERTURE OMENSION, C= 3%

Fig. A-4. The fractional errors soon become insignificant as the nor-
malized aperture dimension increases.
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And from (A-2) and (A-3), the fractional error in Jr is

P

- (r-p) p= "2
T '%p’f ) &™) (sin 27 rx - sin 2x px] dx

o 02
emeN)” gy

R

1 [ _2 e e_yz dy] } (A-10)
T
N7

The upper bounds on the fractional errors, (A-9) and (A-10), are plotted in Fig. A-4. It will be
noted that the fractional errors are less than 1 part in 10” if ¢ is greater than 0.66. The ap-
proximations (A-6) and (A-7) are only used in cases where ¢ > 0.66.
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